
ACME Inc. Network Security and Design Assessment

Sam Heney, 1700469

December 2019

Contents

1 Introduction 3

1.1 Overview . 3

1.2 Aims . 3

1.3 Tools Used . 3

2 Network Overview 5

2.1 Subnet Table . 6

2.2 Host Information . 6

3 Network Mapping 9

3.1 Enumerating Routers and Routing Information . 9

3.2 Enumerating the Firewall . 13

3.3 Bypassing the Firewall . 17

3.4 Adjacent Subnets . 19

4 Security Weaknesses 22

4.1 Default Credentials . 22

4.2 Reused Passwords . 22

4.3 Weak Passwords . 23

4.4 No Lock Out . 23

4.5 Bad NFS permissions . 25

4.6 ShellShock . 26

4.7 DHCP Starvation . 28

4.8 Bad Sudo Permissions . 29

1

5 Network Design Critical Evaluation 30

5.1 Network Structure . 30

5.2 Subnetting . 30

5.3 Routing . 31

5.4 Suggested Additions . 31

6 Conclusions 32

7 References 33

8 Appendices 34

8.1 Nmap Scans . 34

8.2 Subnet Calculations . 40

2

1. Introduction

1.1 Overview

This report will provide the company of ACME Inc. a complete review of their network. This
review was carried out using a Kali machine already attached to the network with login credentials
provided to the tester.

The report will include an overview of the network itself including a network diagram, subnet table
and information about each host. It will then discuss how an attacker might approach mapping
and enumerating the network using only the tools provided. Also included is a section on all of the
vulnerabilities discovered on the network and advice on how to mitigate against them. Finally, a
critical evaluation of the network design is provided with some ideas on how to improve it.

1.2 Aims

The aims of this report are to:

• Provide a detailed map showing all devices on the network and how they are connected.

• Evaluate the security of the network and advise on any countermeasures that should be
introduced.

• Evaluate the design of the network and advise on how it might be improved

• Be clear and precise in describing all of the steps that the tester took at every point of the
network assessment.

1.3 Tools Used

• Kali Linux - The Operating Sytem used for the assessment. Specialised operating system
filled with hacking and penetration testing tools.

• Nmap - Network mapper and port scanner.

• SSH - Secure Shell, used to establish a secure connection between devices over an insecure
network.

• Dirb - Directory fuzzer for web applications.

• Hydra - Used for brute forcing passwords over a network.

3

• John the Ripper - Used for brute forcing password hashes locally.

• iptables - Extremely powerful routing and firewall software.

• Metasploit Framework - Used for exploiting known vulnerabilities and for establishing
reverse shell connections.

• Nikto - Web application security tester and scanner.

• pig.py - For DHCP starvation attacks.

4

2. Network Overview

5

2.1 Subnet Table

There are eleven subnets in use on the network. Nine subnets are within the 192.168.0.0/24 range.
The colours used in the table correspond with the colours used to colour code each subnet on the
network diagram. Full calculations for every subnet can be found in section 8.2.

Network Address Subnet Mask IP Range Broadcast Address
192.168.0.32 255.255.255.224 192.168.0.33-192.168.0.62 192.168.0.63
192.168.0.64 255.255.255.224 192.168.0.65-192.168.0.94 192.168.0.95
192.168.0.96 255.255.255.224 192.168.0.97-192.168.0.126 192.168.0.127
192.168.0.128 255.255.255.224 192.168.0.129-192.168.0.158 192.168.0.159
192.168.0.192 255.255.255.224 192.168.0.193-192.168.0.222 192.168.0.223
192.168.0.224 255.255.255.252 192.168.0.225-192.168.0.226 192.168.0.227
192.168.0.228 255.255.255.252 192.168.0.229-192.168.0.230 192.168.0.231
192.168.0.232 255.255.255.252 192.168.0.233-192.168.0.234 192.168.0.235
192.168.0.240 255.255.255.252 192.168.0.241-192.168.0.242 192.168.0.243
172.16.221.0 255.255.255.0 172.16.221.1-172.16.221.254 172.16.221.255
13.13.13.0 255.255.255.0 13.13.13.1-13.13.13.254 13.13.13.255

2.2 Host Information

This section will describe all of the active hosts, which IPs they have and their open ports. Their
purpose or alias was determined by which ports were open and which services were found to be
running on those ports. The presumed purposes of each machine is also reflected in the graphics
used for the network diagram in the section 2.1.

2.2.1 Router 1

Addresses Ports and Services
eth0: 192.168.0.193/27 22: SSH
eth1: 192.168.0.225/30 23: Telnet
eth2: 172.16.221.16/24 80: HTTP

443: HTTPS

2.2.2 Router 2

Addresses Ports and Services
eth0: 192.168.0.226/30 23: Telnet
eth1: 192.168.0.33/27 80: HTTP
eth2: 192.168.0.229/30 443: HTTPS

2.2.3 Router 3

Addresses Ports and Services
eth0: 192.168.0.230/30 23: Telnet
eth1: 192.168.0.129/27 80: HTTP
eth2: 192.168.0.233/30 443: HTTPS

6

2.2.4 Router 4

Addresses Ports and Services
eth0: 192.168.0.97/27 23: Telnet
eth1: 192.168.0.65/27 80: HTTP

443: HTTPS

2.2.5 Workstation 1

Addresses Ports and Services
eth0: 192.168.0.210/27 22: SSH

111: rpcbind
2049: NFS

2.2.6 Workstation 2

Addresses Ports and Services
eth0: 192.168.0.34/27 22: SSH
eth1: 13.13.13.12/24 111: rpcbind

2049: NFS

2.2.7 Workstation 3

Addresses Ports and Services
eth0: 192.168.0.130/27 22: SSH

111: rpcbind
2049: NFS

2.2.8 Workstation 4

Addresses Ports and Services
eth0: 13.13.13.13/24 22: SSH

111: rpcbind
2049: NFS

2.2.9 Workstation 5

Addresses Ports and Services
eth0: 192.168.0.66/27 22: SSH

111: rpcbind
2049: NFS

7

2.2.10 Webserver 1

Addresses Ports and Services
eth0: 172.16.221.237/24 80: HTTP

443: HTTPS

2.2.11 Webserver 2

Addresses Ports and Services
eth0: 192.168.0.242/30 22: SSH

80: HTTP
111: rpcbind

2.2.12 Firewall

Addresses Ports and Services
WAN: 192.168.0.234/30 53: DNS Server
LAN: 192.168.0.98/27 80: HTTP

DMZ: 192.168.0.241/30 2601: zebra
2604: ospfd
2605: bgpd

2.2.13 DHCP Server

Addresses Ports and Services
eth0: 192.168.0.203/27 22: SSH

80: HTTP
111: rpcbind

8

3. Network Mapping

3.1 Enumerating Routers and Routing Information

After getting set up with the Kali host the first stage was to figure out what IP address it had been
assigned and what subnet that address belonged to. This was done using the ’ip address’ command,
the short form of which being ’ip a’.

Figure 3.1: ’ip a’ executed on Kali

This subnet was determined to be 192.168.0.192/27 as can be seen in figure 3.1. From here, in
order to map the network the tool Nmap was used. A scan of the discovered subnet was executed,
the full results of which can be seen in Appendix A figure 8.1.

As can be seen in the scan results, three new IPs were discovered. The first IP that seemed
interesting was 192.168.0.192 since ports 80 (HTTP) and 443 (HTTPS) were open, indicating the
presence of a web server. The website was then visited in a web browser.

The website was for a vyos router, an open source router operating system. From the scan it could
also be seen that the host had ports 22 and 23 open, running SSH and Telnet respectively. Searching
on the internet for the default credentials of vyos routers they were found to be vyos:vyos. These
credentials were successfully used to login to the router over SSH, as seen in figure 3.2.

Figure 3.2: Successful SSH connection to Router 1

9

3.1.1 Router 1

Once the SSH session had been established on the router, the information that was most pertinent
is how this router is being used and how the routing has been configured. This information is all
contained within the routing table which was fetched by running the command ”show ip route”.
This can be seen in figure 3.3.

Figure 3.3: ”ip route” executed on Router 1

This table contains a lot of important information about the network. Firstly, it immediately gives
an almost complete overview of the subnets present on the network (which are fully described in
section 2.2). The next interesting piece of information is that the router is directly connected to
three different subnets on the network. Firstly, 192.168.0.192/27 which was already discovered but
also subnets 192.168.0.224/30 and 172.16.221.0/24 which were previously undiscovered.

Next, other than the subnets that were found to be directly connected to this router, all subnets
are routed through 192.168.0.226. This indicates that 192.168.0.226 is another router and that it
is being used to route traffic to the rest of the network.

It may also be noted that the routing for this network has been configured using OSPF or Open
Shortest Path First. This is a protocol that essentially automates the process of routing through a
network by using Dijkstra’s shortest path algorithm.

Since this section is focused only on enumerating a path through the network the subnet 192.168.0.224/30
seemed most interesting as it only has two usable hosts, indicating that it might be being used to
connect two routers together. The other subnet 172.16.221.0/24 is enumerated and discussed in
section 3.4.

An nmap scan of subnet 192.168.0.224/30 can be found in appendix A figure 8.3. This scan reveals
that host 192.168.0.226, previously implied to exist by the routing table, does in fact exist. The
host appeared to have identical open ports to the router that had previously been discovered and
navigating to the website that it was serving confirmed that it was another vyos router.

Now that all useful information had been collected from Router 1, the next logical step is to move
on to enumerating Router 2.

10

3.1.2 Router 2

At this point, telnet was used to connect to the second router with the default credentials of
vyos:vyos. This can be seen in figure 3.4.

Figure 3.4: Successful telnet connection on Router 2

From here again the routing table was grabbed using the ”show ip route” command. This can be
seen in figure 3.5.

Figure 3.5: ”ip route” executed on Router 2

Firstly from this table it can be seen that subnets 172.16.221.0/24 and 192.168.0.192/27 are being
routed correctly through Router 1 at 192.168.0.225. Subnets 192.168.0.32/27, 192.168.0.224/30 and
192.168.0.228/30 are directly connected to the router. Finally, all other subnets present are being
routed through a newly discovered router at 192.168.0.230.

At this point the subnets present on this table were already known to exist from enumeration of
the previous router, but now the locations of subnets 192.168.0.228/30 and 192.168.0.32/27 are also
known since they are directly connected to this router. Again, the subnet with only two usable
hosts was considered first which in this case was 192.168.0.228/30. The scan of this subnet can be
found in appendix A as figure 8.7. This scan revealed another device on the subnet that, again
through browsing to the website it was serving, was confirmed to by a vyos router.

11

3.1.3 Router 3

Similarly to the last router, a telnet connection could be established on this router using just the
default credentials of vyos:vyos. This can be seen in figure 3.6.

Figure 3.6: Successful telnet connection on Router 3

Now, again, routing information of the router was enumerated using the ”ip route” command. This
can be seen in figure 3.5.

Figure 3.7: ”ip route” executed on Router 3

This shows that subnets 192.168.0.128/27, 192.168.9.228/30 and 192.168.0.232/30 are directly con-
nected to this router, revealing their position on the network. Next, subnets 172.16.221.0/24,
192.168.0.32/27, 192.168.0.192/27 and 192.168.9.224/30 are being correctly routed back through
Router 2. Finally, subnets 192.168.0.64/27, 192.168.0.96/27 and 192.168.0.240/30 are being routed
through 192.168.0.234, a new previously undiscovered router, or so it seemed.

12

3.2 Enumerating the Firewall

An initial nmap scan of 192.168.0.234 didn’t return any open ports. This was strange since the
routing tables did point to this device as a router. The lack of response was an indication that this
was potentially actually a WAN interface of a firewall and was blocking any connections from the
external network. In an attempt to find out more information, the subnets beyond the router were
scanned.

The scans of 192.168.0.64/27 and 192.168.0.96/27 returned nothing, indicating that they are being
blocked by the firewall. The scan of 192.168.0.240/30 however did reveal a host at 192.168.0.242.
From the open ports found in the nmap scan the host did appear to be serving a website. This
website was found to be vulnerable to the ShellShock vulnerability and a full description of the
exploit process can be found in section 4. After the exploit was completed, the root password of
the host was cracked allowing for SSH access.

Since SSH could now be established, this could now be used as a pivot point to check what access
it has to other subnets behind the firewall. First, the setting to allow SSH tunneling had to be
allowed in the SSH config of the host by adding ”PermitTunnel yes” to /etc/ssh/sshd config. Once
this setting has been enabled, the SSH tunnel can be established. This can be seen in figure 3.8.

Figure 3.8: SSH Tunnel opened to Webserver 2

Now that the tunnel was open and the tun0 interfaces had been created on both hosts, each interface
had to be assigned an IP and enabled. This can be seen in figures 3.9 and 3.10.

Figure 3.9: tun0 interface assigned an IP and enabled on Webserver 2

13

Figure 3.10: tun0 interface assigned an IP and enabled on Kali

Now that the interfaces had been configured, the tunnel should be fully configured. This was
confirmed by pinging through the tunnel from one interface to the other which can be seen in figure
3.9

Figure 3.11: Kali pinging through the tunnel

Since the tunnel was now established, traffic could be forwarded through it. This required changing
a system setting to enable forwarding and creating an iptables rule to forward any traffic coming
from the tunnel subnet to the Webserver 2’s eth0 interface. This will allow tunnel traffic to reach
any subnets accessible from Webserver 2. This can be seen in figure 3.12.

Figure 3.12: Webserver 2 routing settings

Now that the forwarding is in place on the Webserver the networks accessible from it should be
accessible from the Kali host through the tunnel interface. A route was added on Kali to send all
traffic aimed at the 192.168.0.64/27 subnet over the tun0 interface. Then the subnet 192.168.0.64/27
was scanned with nmap, the results of which can be seen in figure 8.11.

As can be seen from the scan results, one host was accessible (192.168.0.66), demonstrating that
access through the tunnel interface has been achieved. Interestingly, this scan only found one host
but logically there should also be a router on this subnet so it can communicate with the rest of
the network. Subnet 192.168.0.96/27 was also routed and scanned, but the scan showed no hosts.

These scan results indicated that the firewall was still restricting some access to the network
behind the firewall from Webserver 2, meaning that it was most likely in a DMZ. Finally, the

14

192.168.0.232/30 and 192.168.0.240/30 were scanned. These results can be seen in figures 8.8 and
8.9 respectively. These scans both resulted in the discovery of some new hosts, confirming that
access to these subnets was being restricted by the firewall.

At this point the IP address 192.168.0.234, previously not accessible, could now be reached through
the Webserver 2 tunnel. It can be seen from the scan results that it is serving a website on port
80. Visiting this website with a browser shows that it is a web interface for a pfSense firewall. This
can be seen in figure 3.13

Figure 3.13: pfSense login portal

The default pfSense firewall credentials of admin:pfsense were guessed and successfully used to log
in to the firewall web interface. This can be seen in figure 3.14.

Figure 3.14: pfSense web interface main page

15

Access to this web interface gives the tester access to complete control over the firewall. The first
place to look was the firewall rules to identify the rule that was dropping traffic coming in on the
WAN interface. This rule can be seen in figure

Figure 3.15: pfSense WAN firewall rules

Two rules can be seen here. The second rule listed allows all IPv4 OSPF traffic coming from any
device to reach any device behind the firewall. The other more pertinent rule is the top rule which
allows any IPv4 traffic from any source to be passed to 192.168.0.242. This is the IP of Webserver
2 which explains why it was accessible. Next, the rules for the DMZ were examined. These can be
seen in figure 3.16.

Figure 3.16: pfSense DMZ firewall rules

Most of the rules listed here are actually disabled, indicated by the red cross in the leftmost column.
Of the two rules that are active, since both rules are matching the same source only one of them
will be in effect. This is because pfSense processes rules from the top down with the first match
winning (Netgate, No date b).

In this case, the rule that is being applied is allowing traffic from any destination to only reach
192.168.0.66. This explains why earlier when this subnet was scanned this was the only host that
was found. The final rules to be investigated are the LAN rules which can be seen in figure 3.17.

16

Figure 3.17: pfSense LAN firewall rules

Here it can be seen that the second rule down is a blanket rule is being applied to all traffic allowing
it to pass. This means that any machines within the LAN of the firewall have full access to all of
the subnets, including the ones that were inaccessible from Webserver 2.

3.3 Bypassing the Firewall

At this point it is known that, according to the firewall, the only machines with access to the
currently inaccessible subnets are machines within the firewall LAN. It’s also known that Webserver
2 has access to 192.168.0.66 according to the firewall rules. This can also be seen from the nmap
scan at figure 8.11.

The host at 192.168.0.66 was then exploited to gain root SSH access, the full details of which can be
found in section 4.5. Now, this access could be used to create a tunnel to that machine, providing
access from Kali to the networks accessible from the LAN.

Similarly to the last tunnel, the first stage is allowing tunneling in the target host’s sshd config file.
Once this change has been made, a ssh tunnel can be established. This can be seen in figure 3.18.
A key difference from the last tunnel is that this one is being created on tun1 rather than tun0 in
order to avoid conflict with the previous tunnel interface.

Figure 3.18: Tunnel to 192.168.0.66 established

Now that the tunnel has been established, the tunnel interface on the target host needs to be
assigned an IP address and routing needs to be configured. This can be seen in figure 3.19.

Figure 3.19: Tunnel to 192.168.0.66 routed and configured

17

Now the remote tunnel interface has been configured and routed, the local interface can be assigned
an IP address and configured as well. This can be seen in figure 3.20.

Figure 3.20: Kali end of tunnel routed and configured

Once this is done, the tunnel has been fully configured and the subnets accessible from the LAN
should be accessible from Kali through the tunnel. This can be seen in figures 8.8, 8.9, 8.10 and
8.12 where nmap scans were performed on all of the previously inaccessible subnets through the
tunnel interface.

A previously undiscovered device revealed in this nmap scan is 192.168.0.97. From the open ports
found in the scan, the host seemed to resemble another router. A telnet connection was attempted
and the prompt confirmed that this was another vyos router. Once again the default credentials of
vyos:vyos were used and access was granted. This can all be seen in figure 3.21.

Figure 3.21: Telnet connection on router at 192.168.0.97

And finally ”show ip route” was run on this router to view the routing table. This can be seen in
figure 3.22. All that can be seen in this table is that all subnets not in the LAN are routed through
the firewall’s LAN interface, but this was predictable.

Figure 3.22: Telnet connection on router at 192.168.0.97

18

3.4 Adjacent Subnets

Now that the all of the routers on the network had been fully explored, the subnets that were
discovered adjacent to each router were also scanned and enumerated.

3.4.1 172.16.221.0/24

The nmap scan for this section can be seen at figure 8.2. The results showed two IP addresses, one
of the previously known Router 1 but another for an unknown host. Since ports 80 (HTTP) and
443 (HTTPS) were open this was presumed to be a web server and the host was accessed from a
web browser. This can be seen in figure 3.23.

Figure 3.23: Default page on 172.16.221.237

This was just a default page for a web server, indicating that if there was content hosted on this
machine it wasn’t being hosted from the root web directory. Dirb was used to fuzz for directories
as can be seen in figure 3.24.

Figure 3.24: Dirb discovering wordpress instance

It can be seen that a wordpress instance was discovered. This was browsed to as seen in figure 3.25.
The security of this server is explored more in depth in section 4.4.

Figure 3.25: Wordpress site on 172.16.221.237

19

3.4.2 192.168.0.32/27

The nmap scan for this section can be seen at figure 8.4. This revealed a host at 192.168.0.34
running ssh, rpcbind and nfs which are the same as the other workstation machines discovered. It
is thus assumed that this device is a workstation and will be referred to at Workstation 2 from now
on.

In section 4, it is described how root access was achieved on this host. Once access was achieved,
using ”ip a” to investigate the interfaces revealed another interface on a new subnet 13.13.13.0/24.
This can be seen in figure 3.26.

Figure 3.26: ”ip a” executed on Workstation 2

In order to access this subnet, an SSH tunnel was set up similar to the tunnels described in sections
3.2 and 3.3. This can be seen in figures 3.27 and 3.28 where the tunnel is opened and the Kali
tunnel interface is configured. For the full tunneling procedure refer to sections 3.2 and 3.3.

Figure 3.27: ”ip a” executed on Workstation 2

Figure 3.28: ”ip a” executed on Workstation 2

20

3.4.3 13.13.13.13/24

Now that a tunnel through Workstation 2 had been established and configured this subnet could
be explored. The nmap scan for this subnet can be seen at figure 8.5. A device at 13.13.13.13 was
discovered with only SSH running on port 22. In section 4, it is described how root access was
achieved on this host. After access was achieved the non-root user was found to be xadmin and the
hostname xadmin-virtual-machine, indicating that this is another workstation machine. This can
be seen in figure 3.29.

Figure 3.29: Username and hostname enumerated on 13.13.13.13

3.4.4 192.168.0.128/27

The nmap scan for this section can be seen at figure 8.6. This scan revealed a host at 192.168.0.130.
Once again, the open ports are identical to most of the other workstation hosts, so it was presumed
that this host is a workstation. This was confirmed once access to the host was gained. The security
vulnerability is fully described in section 4, but just for demonstration purposes in figure 3.30 the
machine is accessed from Workstation 2 and it can be seen that it is another xadmin host.

Figure 3.30: 192.168.0.130 accessed from Workstation 2

21

4. Security Weaknesses

4.1 Default Credentials

This vulnerability arises when a well known pre-built system is used and the default passwords set
when the system is initially configured aren’t changed. It enables attackers to very easily guess the
passwords to the systems as usually they are stated in the documentation of those systems.

All of the routers used on the network are running the VyOS router software with default credentials.
The default credentials of vyos:vyos can easily be found by reading the VyOS documentation (VyOS,
No date) meaning that anyone with network access can log in over SSH.

This vulnerability is also present in the pfSense firewall web interface, where the default credentials
of admin:pfsense are also stated in the documentation (Netgate, No date a). This is especially bad
as anyone with firewall control has a lot of power over how the network traffic is handled.

To mitigate against this vulnerability, all default passwords should be changed so that attackers
cannot find the passwords through the documentation. It is also recommended that for the VyOS
routers, a separate account is made for SSH access which can then be used to log in to the main
VyOS account.

4.2 Reused Passwords

This vulnerability arises when a password used for one account is used again for another account.
This means that if an attacker cracks or guesses the password for one account, they can use this
password again to gain access to other accounts where it has been reused.

In this network, workstations 1, 2 and 5 all have SSH exposed and all use ”plums” as the password
for the xadmin account. This means that if an attacker cracks the password of one account, they
have very easy SSH access to the other machines too.

Not all passwords on the network were cracked or gained access to so there could be more password
reuse on the network. It’s particularly important for accounts that are authenticated to use remote
access protocols like SSH.

To mitigate against this vulnerability, ensure that every account on the system uses a different
password. If there are multiple users who might happen to have set the same passwords, compare
the hashes of all passwords used. If there are multiple users with the same password, force one or
both of them to change.

22

4.3 Weak Passwords

If a weak password is used, the chances that the password will be brute forced increase signifi-
cantly. Every single password discovered on the network was extremely weak, most being six or
less characters with only lower case letters and occasionally numbers.

In order to improve password strength, password length is the main factor. Enforcing a minimum
password length of eight characters would make a big difference, but as a network admin you should
encourage users to set longer and more complex passwords. Forcing inclusion of special characters
and forcing regular password changes actually decreases the security of passwords as users are just
likely to find insecure workarounds (NCSC, 2018).

4.4 No Lock Out

This vulnerability is present when there’s no mechanism for preventing many log in attempts in
quick succession. This enables the attacker to carry out a brute force attack, which is how access
was gained to a significant number of machines on the network.

For example, to get access to Workstation 4 Hydra was used to brute force the password. This can
be seen in figure 4.1.

Figure 4.1: Workstation 4 SSH brute forced

Another instance of this vulnerability on the network was on the wordpress website on Webserver
1. In this case, brute forcing was used to gain access to the admin section of the wordpress instance.
This can be seen in figure 4.2.

Figure 4.2: Webserver 1 wordpress brute forced

With access to the wordpress admin interface, it was possible to edit a file on the website to execute
a PHP reverse shell. This can be seen in figures 4.3, 4.5 and 4.5 where the meterpreter reverse
payload generated by msfvenom is pasted into a file on the website, then a meterpreter listener is
set running so that when the page is visited a shell is opened.

23

Figure 4.3: msfvenom PHP reverse shell payload

Figure 4.4: Webserver 1 reverse shell code in header.php file

Figure 4.5: Webserver 1 meterpreter shell opened

To mitigate against this vulnerability, a lock out mechanism should be in place. SSH for example
has a built in lock out that can be configured in the sshd config file by adding MaxAuthTries
[number] where number is the number of allowed attempts. For the wordpress instance, as well as
restricting login attempts captcha could be used to prevent automated login attempts

24

4.5 Bad NFS permissions

This vulnerability is when NFS is configured to allow access to more files than what are required
to be accessed, or access is allowed from parts of the network where access should not be allowed.
Access to the filesystem enables the attacker to do many different things, some of which will be
described here.

Firstly, if an attacker is given read access to an account’s private SSH key, they will be able to copy
the key and use it to log into machines that can be accessed using that key. This vulnerability is
present on Workstation 2, where the xadmin account’s SSH keys are readable over NFS, allowing
an attacker to use their private key to log into Workstation 3, where their private key is authorised.

Another vulnerability that comes with read access is, if access to the entire filesystem is granted,
the attacker can read the files /etc/passwd and /etc/shadow, allowing them to crack passwords
on the system. This can be seen in figures 4.6, 4.7 and 4.8 where the available mount points are
enumerated, the root filesystem is mounted and then files /etc/passwd and /etc/shadow are cracked
to reveal the xadmin password.

Figure 4.6: Workstation 1 password cracked

Figure 4.7: Workstation 1 password cracked

Figure 4.8: Workstation 1 password cracked

Next if write access is enabled over NFS the attacker can do a lot more. For example, if access
to the root filesystem is granted, an attacker could edit /etc/crontab to include a command to be
executed by root every minute to open a reverse shell. This immediately gives an attacker root
access without having to do anything other than open a listener.

Another possibility with write access is the attacker adding their public SSH key into the target
machine’s authorized keys file so that SSH with key based authentication is possible. This vulner-
ability was carried out on Workstation 5, where there was no .ssh directory but one was created
and an authorized keys file was created with the contents of Kali’s public key, allowing SSH access.
This can be seen in figure 4.9.

25

Figure 4.9: Workstation 5

To mitigate against this vulnerability, firstly NFS access must only be granted to those who need
to access the files. Since NFS doesn’t have any authentication built in, this must be configured
at a network level with firewalling. Then, NFS should only give access to files necessary to be
accessed. Under no circumstances should NFS allow a remote user to access the private SSH keys
of a machine. NFS should be very limited, ideally to only one folder containing the files that need
to be shared.

This could be implemented with a symlink in the root directory that points to a ”Shared Files”
folder in a user’s home directory, with the symlink to the folder being shared over NFS. This way
it’s easy for a user to share only specific files while also not revealing any path information to the
person accessing the files.

4.6 ShellShock

Finally the most specific vulnerability found was ShellShock, a vulnerability where essentially an
attacker can get Bash to execute arbitrary commands and gain unauthorized access. In this case
specifically, a script on webserver 2 at /cgi-bin/status was vulnerable, allowing the tester to open
a shell on the system.

Initially when the IP address was visited from a browser, there is just a static page displaying
system information. This can be seen in figure 4.10.

Figure 4.10: Webserver 2 webpage

26

As seen in figure 4.11, nikto was used to enumerate the web application further.

Figure 4.11: Webserver 2 nikto scan

In the scan results it can be seen that nikto discovered the file /cgi-bin/status and that it is
vulnerable to ShellShock. Now that this was know, metasploit was used to exploit the vulnerability.
First, a metasploit module that exploited this vulnerability was searched for and found.

Figure 4.12: Webserver 2 metasploit search

In figure 4.12 it can be seen that there are quite a few different ShellShock modules, but the only
one that applied in this situation was the apache mod cgi module. This module was then loaded,
the options set, and used to exploit the vulnerability. This can be seen in figure 4.13.

Figure 4.13: Webserver 2 ShellShock exploited

Now that shell access had been obtained, in order to make access in the future a bit more convenient,
the password for SSH was cracked. First, the passwd and shadow files were downloaded. This can
be seen in figure 4.14.

27

Figure 4.14: Downloading passwd and shadow files from Webserver 2

Now that these files had been downloaded, kali was used to brute force the hashes to find account
passwords. This can be seen in figure 4.15 where the credentials root:apple and xweb:pears were
discovered.

Figure 4.15: Downloading and cracking passwd and shadow files from Webserver 2

To mitigate against this vulnerability, the script must not be publicly accessible. This can be done
by editing the Apache server configuration to not allow files from that directory to be served. If it
still needs to be served locally for functionality of the website, Apache can be configured to allow
that by only allowing access to that file from localhost.

4.7 DHCP Starvation

This vulnerability exists when the DHCP server can be repeatedly queried for IPs, allowing an
attacker to request every single IP address on the subnet meaning that any other host that requests
an IP will not be assigned one. This attack was executed using the pig.py tool on kali. This can
be in figure 4.16 where pig.py is repeatedly requesting and holding IP addresses for unique spoofed
mac addresses.

Figure 4.16: pig.py used for DHCP starvation

28

This can potentially be paired with an attacker running their own DHCP server that would force
new hosts looking for an IP to go through an attacker’s listener so that they could capture all of
the target’s traffic.

Mitigating against this attack can be quite complicated, but one solution would be to set up DHCP
Snooping. DHCP Snooping works by reading the payload of the DHCP protocol request and making
sure that source MAC address and client hardware address within the payload are the same. If
they are different, the MAC client hardware address is being spoofed and the DHCP request can
be refused.

4.8 Bad Sudo Permissions

On every workstation and every router it was possible to execute ”sudo su” on non-privileged
accounts to in order become root. This is not necessary and quite a big security issue as if an
attacker gains access to these accounts and knows their password, they can become root.

This vulnerability was made significantly worse due to the fact that weak passwords were used for
all of the non-privileged accounts and passwords were reused frequently. This meant that getting
root access on each host was extremely trivial.

This vulnerability can be quite easily mitigated by setting what commands the non-privileged
accounts have access to through sudo. This can be done by editing the sudoers file and creating a
configuration where sudo users are not able to use the su command. Sudo access should be limited
to only programs the user needs access to.

29

5. Network Design Critical Evaluation

5.1 Network Structure

As seen in the network diagram in section 2.1, this network has a very linear design. That is to say
that to get from a host on the 192.168.0.192/27 subnet to a host on the 192.168.0.64/27 subnet,
the packets would have to pass through four routers and a firewall. This seems like an inefficient
design and it will result in congestion of traffic particularly on routers 2 and 3 as these are currently
central points in the network.

One solution to this would be to connect Router 1 and Router 3. This way, traffic can be routed
more efficiently and in most cases it would reduce the number of hops on the network for a packet
by 1.

Having Webserver 1 connected to its own router interface is good design practice as it allows for
asymmetric switching. This means that the switch can dedicate a significant amount of resources
to serving the web traffic potentially mitigating against a bottleneck. This would be improved even
more if the earlier suggested change was made as it would mean that the router isn’t responsible for
all traffic going to and from the 192.168.0.192/27 subnet allowing it to dedicate even more resources
to serving the web server’s content.

The use of a DMZ was effective. The firewall rules were configured correctly so that access to the
DMZ from the WAN was limited to just the web server’s IP address, and access from the web
server to the LAN was limited to just the workstation IP address, not the router interfaces. Once
the web server was compromised, it only enabled access to the workstation and a pivot through
that machine had to be made in order to achieve full access to the LAN. If the workstation wasn’t
compromised, the LAN network would not have been accessible without altering firewall rules.

5.2 Subnetting

Starting with the subnets between each router, these have correctly been assigned subnets with a
mask of 255.255.255.252, meaning that only two hosts can be present. This is ideal for a subnet for
two interfaces as it prevents any other devices from getting in between and potentially snooping
traffic, as well as not leaving unused addresses. These subnets are sections of the 192.168.0.224/27,
an effective use of VLSM.

At least, most of the routing subnets are done correctly. the subnet being used between eth0 of
Router 4 and the LAN interface of the firewall is currently 192.168.0.96/27, a subnet with 30 hosts.
This isn’t neessary as this subnet only needs two hosts since it’s just for routing. 192.168.0.236/30
would be a much better choice. This is the final remaining section of 192.168.0.224/27 that was
used for all the other routing subnets. This would be a much more efficient choice as it’s currently
not in use and fits the requirements of this section much better.

30

Doing this would free up the 192.168.0.96/27 subnet which could then be used to replace one of the
two subnets on the network that aren’t within the 192.168.0.0/24 space. 13.13.13.0/24 for example
is being used currently for two hosts. This subnet is actually not reserved for private network usage
(Network Working Group, 1996) which could result in an IP conflict if internet access was available
while trying to use this network. If not the now available 192.168.0.96/27, a better choice would
be a subnet within 10.0.0.0/8 as these addresses are reserved for private use.

Subnet 172.16.221.0/24 is being used only for a webserver. This is ideal in terms of serving web
traffic but there is no need for there to be up to 254 usable hosts on this subnet when it’s optimal
for there to only be two. This should be replaced with a subnet with only two usable hosts, ensuring
that the web server content gets full priority.

Subnets 192.168.0.192/27, 192.168.0.128/27 and 192.168.0.32/27 that are adjacent to the routers
appear to have been subnetted to allow for some more hosts to be connected to those subnets. The
network engineer should ensure that allowing for up to 30 hosts for each of these subnets is necessary
as some of that space could be used with VLSM in place of the 13.13.13.0/24 and 172.16.221.237/24
subnets which seem unnecessarily large.

5.3 Routing

Routing was configured with OSPF, a system for automatic routing using Dijkstra’s path finding
algorithm. This is a very good design choice as it allows for modifications of the network to be
made easily as well an ensuring that the routing is done in the most efficient way possible.

5.4 Suggested Additions

One important missing element is an Intrusion Detection System otherwise known as an IDS.
These are extremely useful for automatically analysing traffic going through the network and would
greatly improve the security of the network as most likely any attacks or attempted attacks would be
logged and tracked. This would allow the network engineer to learn from the attack and implement
countermeasures to prevent it from happening again.

The DMZ is currently configured using one firewall with three interfaces, but it would be more
secure to use two separate firewalls with the DMZ being in between them (Steven, S, 2002, p.296).
This would allow for more nuanced configuration of the DMZ and would mean that compromising
the first firewall wouldn’t allow an attacker access to the LAN behind the second firewall.

The network was all connected physically using ethernet as indicated by the ethX devices. This is
fine for a network of this size but the introduction of a wireless access point might be appropriate
to allow users to access the network from their own devices.

31

6. Conclusions

In conclusion, the network is extremely vulnerable to a variety of security issues. An attacker would
have no problem getting access to the entire network within a fairly short amount of time. The
vulnerabilities themselves aren’t particularly complicated and shouldn’t take too long to patch. All
of the vulnerabilities are fixable and aren’t inherent to the current design of the network.

The network design mostly good apart from some subnetting issues and some potential improve-
ments that could be made. These improvements would include changes to the structure of the
network and some additional devices being added to the network.

In its current state, the tester advises that the network should not be connected to the internet
until the security issues have been fixed. It is too vulnerable and valuable data or information could
very easily be acquired or manipulated by an attacker.

32

7. References

Netgate (No date a). pfSense Documentation. [Online]
Available at: https://docs.netgate.com/pfsense/en/latest/index.html

VyOS (No date) VyOS User Guide. [Online]
Available at: https://docs.vyos.io/en/latest/ Last accessed December 10th 2019

Netgate (No date b) Firewall Rule Processing Order. [Online]
Available at: https://docs.netgate.com/pfsense/en/latest/firewall/firewall-rule-processing-order.html
Last accessed December 10th 2019

Network Working Group (1996) Address Allocation for Private Internets. [Online]
Available at: https://tools.ietf.org/html/rfc1918 Last accessed December 10th 2019

Steven, S. (2002 p.296) Testing Web Security: Assessing the Security of Web Sites and Applications.
Indianapolis: Wiley Publishing.

NCSC (2018) Password policy: updating your approach. [Online]
Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach Last accessed
December 10th 2019

33

8. Appendices

8.1 Nmap Scans

Figure 8.1: nmap scan of 192.168.0.192/27

34

Figure 8.2: nmap scan of 172.16.221.16/24

Figure 8.3: nmap scan of 192.168.0.224/30

35

Figure 8.4: nmap scan of 192.168.0.32/27

Figure 8.5: nmap scan of 13.13.13.0/24

36

Figure 8.6: nmap scan of 192.168.0.128/27

Figure 8.7: nmap scan of 192.168.0.228/30

37

Figure 8.8: nmap scan of 192.168.0.232/30

Figure 8.9: nmap scan of 192.168.0.240/30

38

Figure 8.10: nmap scan of 192.168.0.96/27

Figure 8.11: partial nmap scan of 192.168.0.64/27

39

Figure 8.12: nmap scan of 192.168.0.64/27

8.2 Subnet Calculations

8.2.1 13.13.13.0/24

Subnet mask 255.255.255.0
Binary mask 11111111.11111111.11111111.00000000

Prefix (24 + 0) = 0
Network bits (24 - 24) = 0

Host bits (8 - 0) = 8

Total Addresses (28̂) = 256
Hosts available (256 - 2) = 254

Network Address 13.13.13.0
Broadcast Address 13.13.13.255
Useable Addresses 13.13.13.1 - 13.13.13.254

8.2.2 172.16.221.0/24

Subnet mask 255.255.255.0
Binary mask 11111111.11111111.11111111.00000000

Prefix (24 + 0) = 0
Network bits (24 - 24) = 0

Host bits (8 - 0) = 8

Total Addresses (28̂) = 256
Hosts available (256 - 2) = 254

Network Address 172.16.221.0
Broadcast Address 172.16.221.255
Useable Addresses 172.16.221.1 - 172.16.221.254

40

8.2.3 192.168.0.32/27

Subnet mask 255.255.255.224
Binary mask 11111111.11111111.11111111.11100000

Prefix (24 + 3) = 27
Network bits (27 - 24) = 3

Host bits (8 - 3) = 5

Total Addresses (25̂) = 32
Hosts available (32 - 2) = 30

Network Address 192.168.0.32
Broadcast Address 192.168.0.63
Useable Addresses 192.168.0.33 - 192.168.0.62

8.2.4 192.168.0.64/27

Subnet mask 255.255.255.224
Binary mask 11111111.11111111.11111111.11100000

Prefix (24 + 3) = 27
Network bits (27 - 24) = 3

Host bits (8 - 3) = 5

Total Addresses (25̂) = 32
Hosts available (32 - 2) = 30

Network Address 192.168.0.64
Broadcast Address 192.168.0.95
Useable Addresses 192.168.0.65 - 192.168.0.94

8.2.5 192.168.0.96/27

Subnet mask 255.255.255.224
Binary mask 11111111.11111111.11111111.11100000

Prefix (24 + 3) = 27
Network bits (27 - 24) = 3

Host bits (8 - 3) = 5

Total Addresses (25̂) = 32
Hosts available (32 - 2) = 30

Network Address 192.168.0.96
Broadcast Address 192.168.0.127
Useable Addresses 192.168.0.97 - 192.168.0.126

41

8.2.6 192.168.0.128/27

Subnet mask 255.255.255.224
Binary mask 11111111.11111111.11111111.11100000

Prefix (24 + 3) = 27
Network bits (27 - 24) = 3

Host bits (8 - 3) = 5

Total Addresses (25̂) = 32
Hosts available (32 - 2) = 30

Network Address 192.168.0.128
Broadcast Address 192.168.0.159
Useable Addresses 192.168.0.129 - 192.168.0.158

8.2.7 192.168.0.192/27

Subnet mask 255.255.255.224
Binary mask 11111111.11111111.11111111.11100000

Prefix (24 + 3) = 27
Network bits (27 - 24) = 3

Host bits (8 - 3) = 5

Total Addresses (25̂) = 32
Hosts available (32 - 2) = 30

Network Address 192.168.0.192
Broadcast Address 192.168.0.223
Useable Addresses 192.168.0.193 - 192.168.0.222

8.2.8 192.168.0.224/30

Subnet mask 255.255.255.252
Binary mask 11111111.11111111.11111111.11111100

Prefix (24 + 6) = 30
Network bits (30 - 24) = 6

Host bits (8 - 6) = 2

Total Addresses (22̂) = 4
Hosts available (4 - 2) = 2

Network Address 192.168.0.224
Broadcast Address 192.168.0.227
Useable Addresses 192.168.0.225 & 192.168.0.226

42

8.2.9 192.168.0.228/30

Subnet mask 255.255.255.252
Binary mask 11111111.11111111.11111111.11111100

Prefix (24 + 6) = 30
Network bits (30 - 24) = 6

Host bits (8 - 6) = 2

Total Addresses (22̂) = 4
Hosts available (4 - 2) = 2

Network Address 192.168.0.228
Broadcast Address 192.168.0.231
Useable Addresses 192.168.0.229 & 192.168.0.230

8.2.10 192.168.0.232/30

Subnet mask 255.255.255.252
Binary mask 11111111.11111111.11111111.11111100

Prefix (24 + 6) = 30
Network bits (30 - 24) = 6

Host bits (8 - 6) = 2

Total Addresses (22̂) = 4
Hosts available (4 - 2) = 2

Network Address 192.168.0.232
Broadcast Address 192.168.0.235
Useable Addresses 192.168.0.233 & 192.168.0.234

8.2.11 192.168.0.240/30

Subnet mask 255.255.255.252
Binary mask 11111111.11111111.11111111.11111100

Prefix (24 + 6) = 30
Network bits (30 - 24) = 6

Host bits (8 - 6) = 2

Total Addresses (22̂) = 4
Hosts available (4 - 2) = 2

Network Address 192.168.0.240
Broadcast Address 192.168.0.243
Useable Addresses 192.168.0.241 & 192.168.0.242

43

