
Web Application Security Test

Astley Car Rental

Sam Heney 1700469
Year 3 BSc Ethical Hacking
CMP319 Ethical Hacking

2019/20

Abstract

For this report, the tester has conducted a full security assessment of the Astley Car Rental web
application, attempting to find as many vulnerabilities as possible. The tester followed a method-
ology based on the Web Application Penetration Testing section of the OWASP Testing Guide v4
(OWASP, 2017).

By following the methodology many critical vulnerabilities were found in the web application in-
cluding arbitrary file upload, SQL injection and local file inclusion. These vulnerabilities are par-
ticularly critical, potentially allowing an attacker to gain complete control of the server, extract all
information from the database and read any file on the system respectively.

Source code analysis was then performed on some of the vulnerabilities. This should help the
developer understand where they went wrong with their code as well as giving the tester a better
understanding of the application for when advising on mitigation methods.

Mitigations for every vulnerability found and described in the report are then given. These should
be sufficient for a developer to fix all of the discovered vulnerabilities on the application. They are
ordered by severity so that the most important issues can be focused on first, but all flaws should
be addressed fully using the outlined mitigations.

This website, in it’s current state, should not be deployed to a production environment. If it is
already deployed in a production environment, it should be removed until all of the vulnerabilities
described here are fixed. The cost that would come from an attacker exploiting these vulnerabilities
would be far higher than taking the website offline until these flaws are patched.

1

Contents

1 Introduction 5

1.1 Background . 5

1.2 Aim . 5

1.3 Methodology Overview . 6

1.3.1 Information Gathering . 6

1.3.2 Configuration and Deployment Management Testing 6

1.3.3 Identity Management Testing . 6

1.3.4 Authentication Testing . 6

1.3.5 Session Management Testing . 6

1.3.6 Input Validation Testing . 7

1.3.7 Business Logic Testing . 7

2 Procedure and Results 8

2.1 Information Gathering . 8

2.1.1 Fingerprint Web Server . 8

2.1.2 Review Webserver Metafiles for Information Leakage 8

2.1.3 Enumerate Applications on Webserver . 9

2.1.4 Review Comments and Metadata for Information Leakage 9

2.1.5 Identify application entry points . 10

2.1.6 Map execution paths through application . 10

2.2 Configuration and Deployment Management Testing 11

2.2.1 Test Application Platform Configuration . 11

2.2.2 Enumerate Infrastructure and Application Admin Interfaces 11

2.2.3 Test HTTP Methods . 12

2

2.3 Identity Management Testing . 13

2.3.1 Testing for Account Enumeration and Guessable User Account 13

2.4 Authentication Testing . 13

2.4.1 Testing for Credentials Transported over an Encrypted Channel 13

2.4.2 Testing for Weak lock out mechanism . 14

2.4.3 Testing for bypassing authentication schema 14

2.4.4 Testing for Weak password policy . 15

2.4.5 Testing for Weak password change or reset functionalities 15

2.5 Session Management Testing . 15

2.5.1 Testing for Session Management Schema . 15

2.6 Input Validation Testing . 17

2.6.1 Testing for Reflected Cross Site Scripting . 17

2.6.2 Testing for Stored Cross Site Scripting . 17

2.6.3 Testing for SQL Injection . 18

2.6.4 Testing for Local File Inclusion . 21

2.6.5 Testing for Incubated Vulnerabilities . 22

2.7 Business Logic Testing . 24

2.7.1 Test Upload of Unexpected File Types . 24

3 Discussion 29

3.1 Source Code Analysis . 29

3.1.1 Arbitrary File Upload . 29

3.1.2 SQL Injection . 29

3.1.3 Local File Inclusion . 30

3.1.4 Reversible Cookie . 30

3.1.5 User Enumeration . 31

3.2 Vulnerabilities Discovered and Countermeasures . 32

3.2.1 Arbitrary File Upload . 32

3.2.2 SQL Injection . 33

3.2.3 Local File Inclusion . 33

3.2.4 User Enumeration . 34

3

3.2.5 Unlimited Login Attempts . 34

3.2.6 No HTTPS . 34

3.2.7 Cross Site Request Forgery . 35

3.2.8 Directory Browsing . 35

3.2.9 PHP Info . 35

3.2.10 Hidden Guessable Folder . 36

3.2.11 Robots.txt Vulnerability . 36

3.2.12 Hidden Source Code . 36

3.2.13 Reversible Cookie . 37

3.2.14 Cookie Attributes . 37

3.3 General Discussion and Conclusions . 37

4 Future Work 38

5 References 39

6 Appendices 40

6.1 Appendix A: Application Entry Points . 40

6.2 Appendix B: Spider of Application . 43

6.3 Appendix C: Local File Inclusion Admin Pages . 46

6.4 Appendix D: Python Shells . 48

4

1. Introduction

1.1 Background

Web applications are extremely prominent and widely used by companies as an interface to their
products. This is due to them requiring relatively low skill to create along with easy to implement
multi-platform functionality. Since there is such a high demand for web developers, there has also
been an increased demand in web development learning materials. The market for those learning
materials is thus filled with low quality and over-simplified explanations of development concepts,
a particular issue for security.

Unfortunately this results in a surprising amount of web applications with many vulnerabilities in
place. According to a report by Positive Technologies where they researched vulnerabilities across
a large sample size of web applications, attackers would be able to get personal data from 44% of
applications handling such information and 17% of web applications could be exploited to gain full
control of the web server (Positive Technologies, 2018).

One reason it is extremely important for security measures to be in place on web applications is so
that users of the website are not putting their data and privacy at risk by using it. According to
the 2019 Thales Data Threat Report 60% of companies within the sample had been breached at
some point, with 30% of those happening in the past year (Thales, 2019).

1.2 Aim

The aim of this report is to effectively demonstrate and communicate the security issues discovered
on the Astley Car Rental web application. The tester will conduct a full security assessment of the
web application and attempt to find as many vulnerabilities as possible. The test will be carried
out on a virtual web server hosting a duplicate of the target web application. This is so that if any
vulnerabilities are discovered and exploited it won’t interfere with any user’s experience or session.

The tester will follow a methodology based on the Web Application Penetration Testing section of
the OWASP Testing Guide v4 (OWASP, 2017). This methodology covers all different areas and
types of vulnerabilities and should provide a thorough structure for the test. The tester has also
been provided with some login credentials to use during the test.

Once all of the steps of the methodology have been carried out by the tester they will document
their findings in this report, as well as clear instructions on what exact steps were taken to exploit
each vulnerability that was discovered.

5

1.3 Methodology Overview

The methodology used for this test is an adapted version of the OWASP Testing Guide v4 (OWASP,
2017). A few of the sections of OWASP testing guide are used for non-black box testing, as well
as some sections targeting elements that were out of scope. Some sections were omitted due to the
targeted flaws not applying to this type of web application. Each section that was used and it’s
purpose are as follows:

1.3.1 Information Gathering

This section is for initial enumeration of the setup of the website and the initially accessible web
pages and data. This includes finding the technologies that the web server is running, looking at
metafiles and metadata for information and finding entry points to the application.

Tools used in this section are netcat (raw TCP connections), curl (get data using a URL), nmap
(Network exploration tool and port scanner) and Firefox (Browser)

1.3.2 Configuration and Deployment Management Testing

Once the technologies that the server is using are enumerated, the next step is to enumerate
information about these particular instances of the technologies. This includes finding technology
specific configuration information, finding admin interfaces for the application and testing HTTP
methods.

Tools used in this section are Firefox, dirb (Directory brute forcer) and nmap.

1.3.3 Identity Management Testing

In this section, account management is tested. For this test, the only relevant section was deemed
to be testing for account enumeration and guessable user accounts.

The only tool used in this section is Firefox.

1.3.4 Authentication Testing

This section tests how the application handles various functionality to do with accounts including
testing for credential encryption, testing for lockout, testing for bypassing authentication schema
and testing password functionality.

Tools used in this section are Firefox, wireshark (for capturing network traffic) and sqlmap (for
automated SQLi testing and exploiting)

1.3.5 Session Management Testing

Here testing of the web application’s session management functionality is tested. This includes how
the application keeps track of sessions and decoding any potentially interesting session tracking
information.

6

Tools used in this section are Firefox, Burpsuite (suite of tools for modifying requests) and Cyberchef
(Tool for decoding and encoding data).

1.3.6 Input Validation Testing

In this section the way the web application handles user input is tested. This involves submitting
data through previously enumerated entry points and seeing how the application responds. Partic-
ularly the attacker is trying to find cross site scripting, SQL injection, local file inclusion and any
incubated vulnerabilities.

Tools used in this sections are Firefox, sqlmap, Burpsuite and netcat.

1.3.7 Business Logic Testing

Finally, the way the web application handles logical input to entry points is tested. For this test
the only section considered to be relevant was testing uploading of unexpected file types, which was
eventually used to get shell access on the box.

Tools used in this section are Firefox, Burpsuite and Python (programming language).

7

2. Procedure and Results

2.1 Information Gathering

2.1.1 Fingerprint Web Server

As seen in figure 2.1 Netcat was used to get a fingerprint of the webserver:

Figure 2.1: Netcat HEAD request.

A few things were discovered from this: The server technology is Apache Web Server on version
2.4.3, the operating system is Unix based and the back end technology is PHP on version 5.4.7.
This information will be very useful when looking into specific vulnerabilities to do with these
technologies.

2.1.2 Review Webserver Metafiles for Information Leakage

The server’s most useful metafile is usually robots.txt. Curl was used to fetch this file from the
server, revealing a path to a file called doornumbers.txt. The file seems to contain some potentially
sensitive information, but no information that was actually pertinent to the web application itself.
This process can be seen in figure 2.2.

Figure 2.2: Contents of robots.txt and doornumbers.txt

8

2.1.3 Enumerate Applications on Webserver

Nmap was used to enumerate open ports and services running on those ports. This can be seen in
figure 2.3:

Figure 2.3: Nmap scan of webserver

Firstly it can be seen that the webserver is serving the website over HTTP on port 80 and HTTPS
on port 443. This is typical behaviour. However, the server also has exposed ports running an FTP
server on port 21 and a MySQL server on port 3306. These ports ideally shouldn’t be exposed
but the Administrator might have good cause to have them open. As long as they have strong
passwords and no anonymous sessions allowed this should be fine.

Even though port 443 was open and the web server was bound to it, the website was not being
served over this port. The web server just returned a 403 access forbidden code when access was
attempted through a browser.

The rest of the services running were considered out of scope since this webserver was not specified
to be replicating the production environment. Therefore, the tester did not attempt to exploit these
services.

2.1.4 Review Comments and Metadata for Information Leakage

The comments and HTML meta tags were manually parsed for any interesting information. The
only comment of note found is shown in figure 2.4.

Figure 2.4: info.php in a comment

The comment refers to info.php being available for access at the same directory as the page.php
file, which is also in the root directory. After reading this comment, the tester used a browser to
check if the page referenced was present. As can be seen in the figure 2.5, it was.

This page seems to be some kind of reskinned version of phpinfo.php. It gives a huge amount of
information about all of the options set for the PHP interpreter that the server is running. This
isn’t necessarily a vulnerability within itself but it allows a hacker to very easily enumerate potential
attack vectors and discover vulnerabilities. More information about what was discovered through
php info can be found in section 2.2.1.

9

Figure 2.5: info.php page

2.1.5 Identify application entry points

The first GET entry point is a page called ”/page.php” with parameter ”type”. This file is used to
load in other local files and display their content in between the header and footer of the page. The
parameter is used to determine the name of the file to be loaded in. The parameter is normally
defined by what link in the navbar is clicked. This request can be seen in figure 6.1, section 4.1.

Next there is a page called ”/vehical-details.php” with GET parameter vhid. This is used to
display certain details about particular vehicles. The parameter is normally defined by the link
that is chosen on the ”/car-listing.php” page. The request for this page can be seen in figure 6.2,
section 4.1.

Moving on to POST entry points, there were several of interest. These are fully listed in section
4.1: Appendix A but the main ones of interest are Login (figure 6.5), Sign Up (figure 6.6) and
Admin Login (figure 6.7). These all are very sensitive entry points and will be focused on primarily
throughout the report.

2.1.6 Map execution paths through application

Burp proxy’s spider tool was used to map out the application. The results of this can be seen
in section 4.2: Appendix B. One particularly interesting result from spidering the application was
discovering ”/admin/includes/leftbar.php”. Looking at the source code of this page it can be seen
that this page actually lists the exact names of all of the admin section pages. This can be seen in
figure 2.6.

Figure 2.6: Admin pages in source code of page leftbar.php

10

2.2 Configuration and Deployment Management Testing

2.2.1 Test Application Platform Configuration

Since it was known that the web application was using PHP the first place that was checked was
phpinfo.php. Browsing to this location did return the php info file, revealing a huge amount of
information about how the server technologies are configured. In figure 2.7, it can be seen that the
PHP version is 5.4.7, confirming what was enumerated earlier. Also seen is the exact version of
linux that is being used to run the webserver.

Figure 2.7: PHP info page

Just to give an example of some other important information that was disclosed, in figure 2.8 you
can see the exact path to the root directory of the web server:

Figure 2.8: Document root from PHP info

This will be useful if any local file inclusion vulnerabilities are found as the tester could potentially
load in pages that they would not normally have access to. This is demonstrated in section 2.6.4.

2.2.2 Enumerate Infrastructure and Application Admin Interfaces

Dirb was used to enumerate directories and well known paths. The first directory found was
/admin/ and navigating to this directory using a browser revealed an admin login page, indicating
that /admin/ is the web root of a separate admin interface web application. This can be seen in
figure 2.9.

Figure 2.9: Dirb scan finding admin section

11

Manually navigating to this page leads to an admin login page. This can be seen in figure 2.10.

Figure 2.10: Admin login page

Some default credential guesses were made at this point but no brute forcing was attempted.
Eventually the credentials for the admin section would be discovered through SQL injection as
described in section 2.6.3.

2.2.3 Test HTTP Methods

The nmap script http-methods was used to enumerate the useable HTTP methods as can be seen
in figure 2.11.

Figure 2.11: Nmap getting the HTTP methods

12

2.3 Identity Management Testing

2.3.1 Testing for Account Enumeration and Guessable User Account

Using the login form discovered earlier, the tester discovered that it is possible to enumerate active
usernames on the server through the error messages displayed after the login form is submitted. If
a username submitted is a username that is currently in use, the form with give the error message
”Username not found” as can be seen in figure 2.12.

Figure 2.12: Valid username response

Whereas when a username that is currently in use is entered, the error message ”Invalid details” is
displayed. This can be seen in figure 2.13.

Figure 2.13: Invalid username response

This can very easily be used to enumerate active accounts on the web application. It could even be
used to automate the process of brute forcing existing accounts.

2.4 Authentication Testing

2.4.1 Testing for Credentials Transported over an Encrypted Channel

Since the website is served over HTTP, all traffic being sent between the client and the server is,
by default, unencrypted. To make sure that the credentials being sent to the website weren’t being
encrypted by other means, the tester used wireshark to intercept the login form TCP stream as it
was sent to the server.

13

Figure 2.14: Wireshark capture of Login request

As can be seen figure 2.14, the POST request (the red text) was sent unencrypted and the details
submitted can be read in plain text. This means that any attacker intercepting the user’s traffic
can read what they submit, potentially stealing their credentials.

2.4.2 Testing for Weak lock out mechanism

After over 20 attempts to log into an account with a wrong password on both the log in form
on the home page and the admin log in form, the account could still be logged into with no lock
out mechanism engaged.Having no lock out mechanism in place enables attackers to attempt and
carry out brute force/password guessing attacks through the log in forms. It is recommended in
the password guidelines provided by NCSC to have a lockout of 5-10 attempts (NCSC, 2018).

2.4.3 Testing for bypassing authentication schema

For this section, four separate potential attack vectors were considered and attempted. The first was
to use forced browsing to URLs that can only be accessed with an account to check if they are acces-
sible anonymously. The files attempted to access initially were /profile.php, /update-password.php,
/my-booking.php, /post-testimonial.php, /my-testimonials.php and /logout.php. For all of these
files, forced browsing did not work and the tester was redirected back to the /index.php page.

Continuing with the forced browsing attack the files in the admin section that were previously listed
in figure 2.6 were attempted to be accessed directly, but this also failed. The tester was redirected
back to the admin login page when attempting to access these pages.

14

Next, the feasibility of predicting session IDs in order to potentially hijack an authenticated user’s
session was considered. Since this web application uses PHP sessions to manage session handling,
it is not a feasible attack. PHP uses randomly generated 16 byte hexadecimal strings that are
assigned to users in order to manage the continuity of a user’s visit. This string would be completely
impossible to predict or guess, meaning that an attack using this technique was not possible.

There is another cookie used to keep track of a user’s session called ”SecretCookie” but this cookie
was not considered for this section of the test. This cookie is dissected and documented in section
2.6.1.

Finally, SQL injection was attempted in order to bypass the need for a password when logging in to
an account. This technique was attempted at both the standard login page on the web app located
at / and the admin login page located at /admin. The login page located at / was in fact vulnerable
to two different blind SQL injection attacks, one allowing the attacker to specify the email address
of the account to log in to. This attack is described in more detail in section 2.6.3.

2.4.4 Testing for Weak password policy

The tester found there to be no password policy in place at all. An account was successfully
registered with the password ”a”. This is a serious risk as users may have created accounts with
very insecure passwords which can be easily brute forced or guessed by attackers. According to
NCSC guidelines there should at least be a minimum password length in place (NCSC, 2018).

2.4.5 Testing for Weak password change or reset functionalities

The update password functionality is completely broken meaning that users may not change their
password. If a user discovers that the password they are reusing was leaked from a data breach of
where they are reusing it from, they wouldn’t be able to update their password to mitigate attackers
using their credentials.

The functionality that is broken is that even if the password to be changed to is the same in the
”Password” field as in the ”Confirm Password” field, the form returns that they don’t match.

2.5 Session Management Testing

2.5.1 Testing for Session Management Schema

For this test, the way the website uses cookies to keep track of sessions was investigated. This
involved looking into how the web application uses cookies to authenticate users and to see if those
cookies could be forged or not. From previous enumeration it was found that the web app uses a
”SecretCookie” cookie to store session credentials. This can be seen in figure 2.16.

Figure 2.15: SecretCookie within a GET request

15

The cookie didn’t appear to have any plain text data but in order to check for obfuscated data
CyberChef was used to attempt to decipher the cookie. The data resembled Hex information but
some of the letters were not within the range of Hex numbers. This prompted the tester to use a
ROT13 operation on the data. After this, the data could be decoded as hex data and the plain
text information was revealed. This can be seen in figure 2.16.

Figure 2.16: CyberChef decryption of the Secret Cookie

It was trivial to deobfuscate the cookie and read the plain text data, but ultimately any method of
encoding the information that doesn’t involve encryption will be reversible so obfuscation should
not be relied upon as a security measure. If cookies are to be used to store this information, they
should be encrypted. Ultimately however, all of this data should be kept server side using the
already in use technology provided by PHP sessions.

Regardless of the obfuscation attempt, looking at the three components of the cookie it can be seen
that - once deobfuscated - the cookie holds the email in plain text, an MD5 hash of the password
and a unix time stamp. If this cookie were to be stolen somehow, the attacker could very easily
brute-force the password since the MD5 algorithm has very low complexity. They would then have
the user’s email and password and would be able to log in as them.

Since an email address and password was required for the cookie it didn’t really seem possible to
forge without those credentials. The number was determined to be a unix time stamp after multiple
sequential session cookies were decoded using the CyberChef recipe as seen in the figure 2.17.

Figure 2.17: CyberChef decryption of multiple Secret Cookies

16

2.6 Input Validation Testing

2.6.1 Testing for Reflected Cross Site Scripting

No GET requests where HTML code could be embedded in the request could be discovered, and
therefore reflected cross site scripting was not considered to be possible.

2.6.2 Testing for Stored Cross Site Scripting

In the profile section the user has the capability to post testimonies that are displayed on the home
page. This functionality was found to be vulnerable to stored cross site scripting. Figure 2.18 shows
the code that was submitted as a testimonial.

Figure 2.18: Cross Site Scripting input

Once submitted, this testimonial was stored on the home page. On visiting the homepage (/in-
dex.php) the javascript code could was executed. This can be seen in figure 2.19.

Figure 2.19: Cross Site Scripting output

In the admin section where the testimonies can be viewed in a table, the input is rendered safely
and correctly as can be seen in the figure 2.20.

17

Figure 2.20: Cross Site Scripting content rendered in Admin section

Each of the admin sections that displayed information were all tested for cross site scripting and
they were all similarly protected and functional.

2.6.3 Testing for SQL Injection

Firstly, the main login form used to log in to normal accounts on all pages was tested for SQL
injection using sqlmap. Of the two fields - email and password - the form was found to be vulnerable
to three different payloads. This can be seen in figure 2.21.

Figure 2.21: Sqlmap discovered vulnerabilities

Two blind injections were found. The first one, a boolean-based blind injection, allows the attacker
to log in as a user. Figure 2.22 shows the payload being placed into a login POST request using
Burp proxy.

Figure 2.22: Boolean-based blind vulnerability

The attacker isn’t able to specify the user, it just logs them in as Steve Brown. The profile logged
into from the attack in the figure 2.22 can be seen in figure 2.23.

18

Figure 2.23: Steve Brown’s profile accessed with SQLi

The other blind injection found, a time-based attack, allows the attacker to specify the email address
in the payload. This can be seen in figure 2.24, where again the payload is being inserted using the
Burp proxy.

Figure 2.24: Time-based blind vulnerability

test@test.com is the email belonging to the user Joe Bloggs. As can be seen in figure 2.25, that
user was successfully logged in to:

Figure 2.25: Joe Bloggs’ profile accessed with SQLi

19

As well as the blind SQL injection attacks found, the other attack - an error based attack - enables
the attacker to retrieve information about the database being used. The first thing to do was
enumerate the tables in the database. This can be seen in figure 2.26.

Figure 2.26: Sqlmap dumping a list of databases

Only the first few database names were included in the figure. As can be seen, one of the names
is carrental. This is the only database name the tester could see that related to the target web
application. Once the database name was enumerated, the tables within that database were queried
for and listed. This can be seen in figure 2.27.

Figure 2.27: List of tables in the carrental database

From this point, the attacker can dump all of the information in all of the tables including the
user data and password hashes which can be attempted to be cracked. Looking at the list of
tables however, the admin table seemed most interesting. Sqlmap was used to dump the account
information as well as crack the password hash that was dumped from the table. The password
was found to be ”hal”. This can be seen in figure 2.28.

Figure 2.28: Admin credentials cracked with sqlmap

Using the credentials admin:hal the admin section could then be accessed by the tester.

20

2.6.4 Testing for Local File Inclusion

The first most obvious place to check for this was the page.php page where as seen in section 2.1.5
a page name is passed in via the GET request. The content of the page passed in is then loaded
in between the header and footer of the page.php page. To test for local file inclusion, a file that
was known to exist was used: phpinfo.php. The file was loaded in successfully which can be seen
in figure 2.29.

Figure 2.29: phpinfo.php loaded with LFI

So files can be loaded in that are within the web root. Next it was tested whether arbitrary system
files could be loaded in. Since it was known that the server was running a Linux distribution, a file
that must be present and accessible on the system is /etc/passwd. This is where account information
is kept. Directory traversal was not found to be necessary and the file could be addressed using the
absolute path of /etc/passwd. The file was successfully loaded in, this can be seen in figure 2.30.

Figure 2.30: /etc/passwd loaded with LFI

Using the phpinfo vulnerability it was discovered that the webroot on the system of the application
is ”/mnt/sda2/swag/website/”. Combining that with the file discovered earlier which gave the
names and locations of all of the admin pages (figure 2.6), this vulnerability could be used to access
the admin section of the web application unauthenticated.

In appendix C figure 6.13, the page ”reg-users.php” was loaded with the full path being
”page.php?type=/mnt/sda2/swag/website/admin/reg-users.php”. This gave full access to the list
of all the users registered on the web app.

The same technique could be used to list out the bookings (figure 6.14), subscribers (figure 6.17),
vehicles (figure 6.19), brands (figure 6.15), testimonials (figure 6.18) and ”contact us” submissions
(figure 6.16). All of these figures are in appendix C.

21

2.6.5 Testing for Incubated Vulnerabilities

In this stage, the vulnerability of stored cross site scripting was attempted to be used to steal a
logged in user’s SecretCookie. First, a payload was created and submitted as a testimonial to the
referrals page. This can be seen in figure 2.31.

Figure 2.31: Cookie stealing javascript payload

Once this payload was submitted and stored on the main page, on the target machine an account
was logged into and the main page was visited. This can be seen in figure 2.32.

Figure 2.32: Victim logged in on the home page

Once the page was loaded on the target machine, the JavaScript was immediately executed and the
cookie data was sent to the listener on the attacking machine. This can be seen in figure 2.33.

Figure 2.33: Listener recieving the stolen cookie data

Once the cookie data had been stolen, the site was visited from the attacking machine. In figure
2.34 it can be seen that the attacker is not initially logged in.

22

Figure 2.34: Attacker not logged in

Then, the request to get the homepage was manipulated with Burp proxy so that the stolen cookies
were inserted in place of the attackers cookies. This can be seen in figure 2.35.

Figure 2.35: Cookie replaced with victim’s cookie

Finally, once the forged request is sent to the server, the server now believes that the attacker is
the victim and the session has been successfully hijacked. This can be seen in figure 2.36, where
the attacking machine is now logged in as the victim account.

Figure 2.36: Attacker logged in as the victim

If an admin were to log in to the admin section, this exact same technique could be used to hijack
their session. The technique is not dependant on the privilege level of the logged in user.

23

2.7 Business Logic Testing

2.7.1 Test Upload of Unexpected File Types

In the user’s account page there is an option that allows the user to upload a new profile picture.
This can be seen in figure 2.37.

Figure 2.37: Upload photo form

First thing was to test if arbitrary file types could be uploaded. A php file with some very simple
code that just echoed 1+1 was created as a test of code execution. This was then submitted through
the profile picture update form. The update was however refused, as can be seen in figure 2.38.

Figure 2.38: File type detection mechanism being triggered

It can be seen that there is some kind of filter in place to prevent bad file types from being uploaded.
This was bypassed using several different methods. Firstly, the Burp proxy was used to intercept
the post request submitting the new profile picture data. This can be seen in figure 2.39.

24

Figure 2.39: Burp capture of upload form submission request

The data is being submitted as multipart/form-data content with the only section being the image
data itself. Due to the .php extention, the client has determined the content type of the image
data to be application/x-php. Since this is being determined by the client, this information can be
modified by the attacker to be defined as image/jpeg content. This can be seen in figure 2.39.

Figure 2.40: Burp proxy used to modify MIME file type

With this modification in place, the request was forwarded to the server. At this point, the server
responded with an alert verifying that the profile image had been changed to test.php which can
be seen in figure 2.41.

Figure 2.41: File successfully uploaded

25

The tester then navigated to /pictures/test.php where the file was stored, and it was verified that
code execution had been achieved. This can be seen in figure 2.42, where the code to echo 1+1
displays a 2:

Figure 2.42: Code execution

Another method was used to bypass the detection. A file containing php code but with a file
extention of .jpg could be uploaded without issue. Using the local file inclusion vulnerability
described in section 2.6.4, this file can then be loaded and executed. This can be seen in figure
2.43, where a file called test.jpg containing code to echo 1+1 is included and executed:

Figure 2.43: LFI used to achieve code execution

At this point the tester attempted to use code execution to get a shell. There were many failed
attempts, including generating and using a php msfvenom meterpreter shell payload, using a weevely
shell, executing nc -e /bin/sh, piping bash over linux sockets and using php sockets with the tcp file
descriptor. Something about the networking of the virtual machines or the web server configuration
prevented any of these from working.

The PHP exec() function was usable when files were uploaded when containing it, so that was
initially used to get command execution. This can be seen in figure 2.44.

Figure 2.44: ls -la executed using basic php code execution

Interestingly, only one line of output seemed to be being returned. This was also an extremely
cumbersome method of command execution as the entire process for spoofing the file type using
burp proxy as described above had to be used to execute a command and only one line of output
could be displayed. Since this is the only command execution method that seemed to work, the
tester had to adapt.

26

Initially, burp repeater was used to modify the data to a different command, post the new profile
picture update request, and then the picture page could be loaded to see the command output.
This, although a lot faster, was still quite cumbersome and still only displayed one line of the
output.

Python was used to automate this process. First, using the requests library, a PHP session was
established. Then a login POST request was sent so that the program could authenticate as a user
and access the account section. Now authenticated, the POST request to change profile picture
was then replicated using python, with the command in the PHP code to be executed being defined
by a string variable. Finally, once the PHP file has been uploaded, the program performs a GET
request on the file to recieve the output of the command.

To address the problem of only getting one line of output at a time, a loop was used to execute the
command multiple times but piping it into the head command, iterating over the lines of output and
recieving them one by one. The loop ends when it detects two lines of the same output, indicating
that head has reached the end of the output length and no more output needs to be read. The shell
can be seen in use in figure 2.45, listing a directory, executing whoami and catting a file:

Figure 2.45: ls, whoami and cat with the Python shell

This allows for full access to a lot of files on the machine, but most interestingly the shell could be
used to list and cat files from the web root. The figure 2.46 shows the shell being used to list the
web root using the absolute path discovered earlier in section 2.2.1:

27

Figure 2.46: Using the shell to list the web root content

The full code for this shell can be found at appendix D figure 6.20. This code was adapted to make
use of the LFI code execution vulnerability as well. All that needed to be changed was the filename
of the upload - test.jpg instead of test.php - and the urls of the POST and GET requests. Since
the GET request returned the whole header and footer of the page as seen in figure 2.43, a filter
was implemented to only fetch the part of the page that was the command output. All of this can
be seen in the code in appendix D figure 6.21.

28

3. Discussion

3.1 Source Code Analysis

3.1.1 Arbitrary File Upload

As described in section 2.7.1, the file upload filter was bypassed by modifying the content type
header in the multipart/form-data request. The code for processing uploaded files is found in the
changepicture.php file.

It can be seen that in this code the only filter being applied to the upload is a filter of the file’s
MIME file type as defined in the request. This code can be seen here:

<?php

if ($fileuploadtype=="TYPE" || $fileuploadtype=="ALL"){

$validtypes= array("image/jpeg","image/jpg","image/png");

if(in_array($file_type,$validtypes)=== false){

echo '<script type="text/javascript">

alert("Invalid filetype detected - what are you up to?.");</script>';

echo "<script>document.location='$nextpage'</script>";

exit();

}

}

?>

This code will effectively filter out any MIME types that aren’t for images. However, the MIME
type of a file can be easily forged as seen in section 2.7.1. This filter alone is not sufficient for
preventing file types that aren’t images from being uploaded.

3.1.2 SQL Injection

In section 2.6.3, SQL injection was found with three different payloads. The file that handles the
vulnerable form is /includes/login.php. The specific code that makes the SQL query can be seen
here:

<?php

include './sqlcm_filter.php';

$sqlquery="select * from tblusers where EmailId=(".$username.")";

$query = mysql_query($sqlquery) or die(mysql_error());

29

$rows = mysql_num_rows($query);

$row = mysql_fetch_array($query);

?>

It can be seen that ”sqlcm filter.php” is included before the query is built. The content of that file
is as follows (it has been linted for readability):

<?php

$username= str_replace(

array("1=1", "2=2", "select","Union","'a'='a'","2=2","1 =1"),

"",

$username

);

?>

Looking at this filter, firstly an attempt to mitigate an attack using a boolean payload has been
made with a series of ”x = x” payloads being replaced. Unfortunately, this in an ineffective way to
mitigate against this kind of vulnerability since there is essentially endless way of creating a true
condition. Even ”3=3” is enough to defeat this filter.

Next, the words ”select” and ”Union” are filtered out. Unfortunately, the case sensitive php string
replace function was used so both ”SELECT” and ”UNION” won’t be filtered out. The case
insensitive str ireplace function should have been used instead, but ultimately this is not an effective
method of preventing SQL injection.

3.1.3 Local File Inclusion

As seen in section 2.6.4, LFI was found on the page page.php. In the file page.php, the script
attachment.php is used to include a file. The code for this script is as follows:

<?php

$pagetype=$_GET['type'];

include('lfifilter.php');

include ($pagetype);

?>

As can be seen here the script takes a filename sent in a GET request and includes the content.
Page.php is then used to display this content in between the header and footer of the website. Since
the GET parameter isn’t sanitised in any way, this allows an attacker to include arbitrary system
files. This is exploited in section 2.6.4.

It appears as if some attempt to prevent this was intended to be made with reference to a ”lfifil-
ter.php” file, but this file was not present in the application files.

3.1.4 Reversible Cookie

As seen in section 2.5.1, the ”SecretCookie” used to keep track of user information is obfuscated, but
not effectively. The file used to generate the cookie was discovered to be cookie.php, the contents
of which is as follows:

30

<?php

$str=$username.':'.$password.':'.strtotime("now");$str = str_rot13(bin2hex($str));

setcookie("SecretCookie", $str);

?>

It can be seen that ROT13 and hex encoding have been used to obfuscate the cookie. This kind
of obfuscation can be easily reversed as described in section 2.5.1. The username and password
variables are set in /includes/login.php on lines 8 and 9. The password is an MD5 hash of the
actual password sent in the POST request to log in, as seen in the following code snippet:

<?php

$username=$_POST['email'];

$password=md5($_POST['password'])

?>

This means that if someone intercepted this cookie a user’s account details could easily be stolen.
Since MD5 was used, the password would also be easily brute-forceable.

3.1.5 User Enumeration

This vulnerability arises due to different error messages being sent for when an active username
but with an incorrect password is submitted and when a username not present on the database
is submitted. This vuln is caused by code in the /includes/login.php file. It is also described in
section 2.3.1.

If there is an incorrect username then the query for the user returns no rows and a ”Username
not found” message is displayed. This code is from username.php which is included in /in-
cludes/login.php.

<?php

if($rows==0){

echo '<script language="javascript">'; echo 'alert ("Username not found");';

echo 'window.history.back();'; echo '</script>'; die();

}

?>

Then if a correct username is submitted, a second query is made to fetch the account using the
username and password provided. If this query returns no results, the password was incorrect and
the message ”Invalid Details” is shown.

<?php

if ($rows > 0) {

[code removed]

} else {

echo "<script>alert('Invalid Details');</script>";

[code removed]

}

?>

This allows attackers and malicious users to check if a username is in use on the website or not.

31

3.2 Vulnerabilities Discovered and Countermeasures

3.2.1 Arbitrary File Upload

Described in sections 2.7.1 and 3.1.4 is a vulnerability that enables attackers to upload arbitrary
files to the web server. This also lets attackers execute code on the server, giving them access to
all kinds of functionality including the possibility of getting a reverse shell.

File uploading and filtering can be a complex task so there are a few different mitigations that
should be employed. The only mitigation currently in place is a MIME file type checker which can
be circumvented by spoofing the MIME type with a proxy like Burp proxy.

Firstly, a check on the actual file extention should be made. This should be specifically a filter
that ensures that the file name ends with ”.jpg” or ”.jpeg” or ”.png”. This way, as long as the web
server’s file handling is configured correctly, there is no possibility that if the file is directly accessed
the contents will be executed as code.

Another way to do it is use a PHP function to check whether the file is an image or not. DO NOT
use getimagesize() to do this as in the PHP documentation it explicitly advises against the function
being used in this way for security purposes. Instead, use the exif imagetype function. This will
return false if the file is not a valid image. An example of this being used to validate an image
would be:

<?php

if (exif_imagetype('filename')) {

// store the image

}

?>

Even better, if you know the file types you are filtering for, you can check the binary to make sure
that the files have the correct headers. Here is an example implementation for just JPG and PNG:

<?php

function is_jpeg(&$pict)

{

return (bin2hex($pict[0]) == 'ff' && bin2hex($pict[1]) == 'd8');

}

function is_png(&$pict)

{

return (bin2hex($pict[0]) == '89' && $pict[1] == 'P' && $pict[2] == 'N' && $pict[3] == 'G');

}

if (is_png(image) or is_jpeg(image))

{

// store the image

}

?>

This technique, combined with extention checking and MIME type checking, should prevent mali-
cious users from uploading arbitrary files.

32

3.2.2 SQL Injection

As described in sections 2.6.3 and 3.1.5, this application is vulnerable to SQL injection. Specifically
the main log in form is vulnerable. This allows attackers to log in as any user they have the email
of and obtain any information from the database including account emails and password hashes,
admin information and anything else held in the database.

To mitigate against this vulnerability, prepared statements should be used when executing any SQL
queries that involve user input. Since the vulnerable part of this application is the log in form, that
will be used as an example. The original code from login.php is as follows (linted for readability):

<?php

$sqlquery="select * from tblusers where EmailId=(".$username.") and Password='$password'";

$query = mysql_query($sqlquery) or die(mysql_error());

$rows = mysql_num_rows($query);

$row = mysql_fetch_array($query);

?>

It can be seen that the raw input of $username and $password are being appended directly to the
query meaning that input such as ”’ OR 30=30 –” will just select all of the tblusers entries as that
condition is always true. This code can be modified to use prepared statements as follows:

<?php

$stmt = $mysqli->prepare("select * from tblusers where EmailId=? and Password=?");

$stmt->bind_param("ss", $username, $password);

$stmt->execute();

$result = $stmt->get_result();

$row = $result->fetch_assoc();

?>

This way, the user input is sanitised by PHP’s inbuilt filters. a payload like ”’ OR 1=1 –” would
just be put in exactly as is, not being executed as SQL. This is a far safer way to handle user driven
SQL queries and will protect against SQL injection. This method should be used anywhere on the
website where it’s possible that a user can control the input.

3.2.3 Local File Inclusion

This vulnerability is discussed in sections 2.6.4 and 3.1.1. Essentially it allows a user to load and
display arbitrary files from anywhere in the system.

There are multiple ways to mitigate against this vulnerability. Firstly, if using a php file to include
files, a whitelist of files could be used to ensure that only files that need to be loaded in can be
loaded in. However, in the case of this web application it’s completely unnecessary to use this
functionality since the pages being loaded in are hard coded anyway.

This being the case, instead of using a page like this to load in content, the header and footer could
be included in the code of the separate pages using php’s include function. This would eliminate
the possibility of malicious user input. For example, instead of using page.php?page=about.php
you would just use about.php and include the header and footer above and below the content
respectively in that page’s file.

33

3.2.4 User Enumeration

In sections 2.3.1 and 3.1.3 a vulnerability that allows active usernames to be enumerated by an
attacker is described. This is an issue as once an attacker has a username or a list of usernames,
they can attempt a bruteforce attack on the username in an effort to gain access to the account.

To mitigate against this vulnerability, identical and generic error messages should be shown instead
of unique messages depending of the condition of the login failure. In this case, as seen in section
3.1.3, the error message ”Username not Found” is shown if the username doesn’t exist, whereas if
it does exist but an incorrect password is given the message ”Invalid Details” is shown.

This should be changed so that in either case ”Invalid Details” is shown. This means that attackers
won’t be able to tell if it’s an existing username or not, preventing enumeration of users.

Something to be careful of is that currently the first condition echoes a script with the lan-
guage=”javascript” attribute whereas the second doesn’t have this tag. This could be used to
tell the difference between the two errors even with the same alert content. To fix this, ensure that
in both cases the same attributes on the script tags are being used.

The safest way to do this would be to have a function that echoes the error message alert javascript
and then call that function when either case fails.

3.2.5 Unlimited Login Attempts

This vulnerability, discussed in section 2.4.2, allows users and attackers to attempt to log in an
unlimited number of times. This essentially enables attackers to use brute force attacks to try and
guess account passwords and log in as the targeted account.

To mitigate against this, only a limited number of log in attempts should be allowed before a lock
out mechanism is engaged. One way to implement this would be to have a counter that gets added
to whenever a log in is attempted on a given account. If the counter reaches five, allow no log in
attempts for five minutes.

If email functionality is configured on the server a system to notify a user that their account is
being targeted by a brute force attack could also be used.

3.2.6 No HTTPS

As seen in section 2.4.1, a lack of HTTPS for web server traffic means that any information sent
back and forth between the server and the client will be unencrypted. If an attacker is snooping
traffic they will be able to see everything sent back and forth, including plaintext credentials.

HTTPS can be very easily configured using LetsEncrypt as a certificate authority to generate a
certificate. Once you have a certificate, Apache can be configured to use it when encrypting traffic
with HTTPS so that the user’s browser will accept that the certificate is from a trusted certificate
authority.

The certificate will need to be renewed fairly regularly but if you use LetsEncrypt’s tool certbot
you can automate the renewal procedure with a cronjob.

34

3.2.7 Cross Site Request Forgery

This vulnerability arises when a user has active session on the web application and an attacker
uses a malicious form on another website that submits to the target website to get them to do
some sort of action on the application. For example, in this case, the password change funtionality
is vulnerable to CSRF, meaning that if someone is logged in a malicious form could be used to
force the user to submit the ”change password” form allowing an attacker to change the target’s
password to whatever they want and log in to their account.

To prevent this, a CSRF token should be used to verify that the form request was definitely created
and sent by the target user. A CSRF token is just a long random string that can be saved in the
PHP session, like so:

<?php

$_SESSION['token'] = substr(base_convert(sha1(uniqid(mt_rand())), 16, 36), 0, 32);

?>

Now the random token has been set, it should be used in all forms as a hidden field. For example:

<input type="text" name="token" value="<?=$_SESSION['token']?>"/>

<?=$var?> is shorthand for <?php echo $var;?>. Finally when processing the form, verify that
the token submitted matches the token in the php session. This confirms that the person who
submitted the form did actually submit it from the web application. This can be seen in the
following code:

<?php

if ($_SESSION['token']==$_POST['token']) {

// Token is valid, do the form action

} else {

// Token is invalid, return error

}

?>

3.2.8 Directory Browsing

As seen in 2.1.6, /admin/includes/ is a listable directory allowing you to see all of the files within it.
This is an issue as any user is able to enumerate functionality and potentially access PHP scripts
that are intended to just be accessible to admins.

To mitigate this vulnerability on the Apache Web Server, disable it by adding ”Options -Indexes”
to the .htaccess file of the webserver. If .htaccess cannot be used, the apache webserver config file
/etc/httpd/conf/httpd.conf can be altered to disable directory browsing too. Just change the line
that says ”Options Indexes FollowSymLinks” to ”Options FollowSymLinks”.

3.2.9 PHP Info

The page phpinfo.php displays the output of the phpinfo() command. This command outputs a
huge amount of information about the webserver including the web server version, the version of
the operating system, the web server root directory, the username of the user who installed php

35

and if they are a sudo user and more. For an attacker, this information is extremely useful as they
immediately can look for attack vectors brought about by any of the configuration settings set here.

To mitigate this, either access to the phpinfo.php page should be limited or the page itself should
be removed. One way to limit access to it would be the .htaccess file for the Apache web server.
Just edit it and add the following lines:

<Files phpinfo.php>

order allow,deny

Deny from all

</Files>

This will prevent any access to the phpinfo file from the web server. The function can still be
executed with php if needed. To disable the function phpinfo() altogether, the /etc/php.ini file
should be edited to include the line ”disable functions = phpinfo”. This prevents the command
from being executed and thus is probably a more secure mitigation, but the mitigation you should
choose depends on what you require.

3.2.10 Hidden Guessable Folder

This vulnerability arises when files that are not meant to be publicly accessible are placed in folders
that, while not indexed, are easily guessable. In this case the folder /development/ and it contained
the file sqlcm.bak, a file describing the SQL injection countermeasures. In this case, the folder can
easily be guessed with dirbuster.

There are a few options for mitigating this vulnerability. Firstly and most obviously, the folder
could be moved to outside the webroot preventing it from being served by the web server. If however
the folder needs to be in the webroot for development purposes, a .htaccess file should be created
and placed within the folder that you would like to prevent access to. Then the line ”deny from
all” should be written to the file. This will prevent any external access to the folder.

Something to note is that if files within this folder are being called via AJAX this method will
prevent the AJAX from functioning as AJAX relies on requests made to the server. In this case,
the files should be put in a separate folder or an exception for the server’s IP should be made within
the .htaccess file.

3.2.11 Robots.txt Vulnerability

This vulnerability comes from when robots.txt is used to hide files from users, not just inform
crawlers where not to go. In this case, a file at /FRUKTQLORLHM/doornumbers.txt seemed to
contain some sensitive information. This can be seen in section 2.1.2.

To mitigate against this vulnerability, robots.txt should not be used to hide files. Files with sensitive
information like this should not be hosted in a publicly accessible way. If they are, more effort should
be made to obfuscate the path so that crawlers and directory fuzzers can’t guess it and they should
not be mentioned anywhere publicly.

3.2.12 Hidden Source Code

This vulnerability, discussed in section 2.1.4, is when sensitive information is accidentally disclosed
in the source code available to the client, usually in comments.

36

This can be mitigated by ensuring that no sensitive information is stored in the comments of any
code. If notes about the code need to be kept, they should be kept in a seperate file outwith the
webroot directory so that it’s inaccessible to the users.

3.2.13 Reversible Cookie

The SecretCookie cookie is being used to store sensitive user information in an insecure way. This
means that if the cookie is intercepted by an attacker they will be able to decipher this information
easily.

To prevent this vulnerability, sensitive information shouldn’t be stored in a Javascript cookie.
Instead, if it needs to be accessed by other parts of the application, PHP sessions should be used
to store the information and provide access to it.

3.2.14 Cookie Attributes

The programmer of this application has not set the HttpOnly flag on the session cookie. This would
prevent client side javascript code from accessing it, limiting the damage of cross site scripting
vulnerabilities.

To fix this, set the cookie httponly session attribute to true. The syntax for this is as follows:

<?php

session.cookie_httponly = True

?>

3.3 General Discussion and Conclusions

It can be seen from everything described in the various sections of this report that this application
is severely insecure with several major vulnerabilities.

The key vulnerabilities that should be taken most seriously are arbitrary file upload, SQL injection
and local file inclusion. Arbitrary file upload allows the attacker to upload files containing PHP
code to execute on the server, essentially enabling full control of the server.

SQL injection allows the attacker to log in as any user and gives them complete access to the
entire back end database including customer data, admin information, information about products
that may not be publicly accessible and anything else present in the database. Local file inclusion
similarly enables the attacker to read any file present on the system, including files containing
potentially sensitive data like admin pages from the website that display user data.

User enumeration and unlimited login attempts independently are fairly minor, but when both are
present they become a lot more dangerous. An attacker can launch an initial brute force attack to
enumerate usernames, then a second brute force attack to attack all of the usernames discovered
and attempt to access their accounts. This puts the safety of users of the site at risk and as such
should be addressed immediately. A lack of HTTPS and being vulnerable to cross site request
forgery both present even more risks to users.

The rest of the vulnerabilities described are less severe than the ones listed here but should still be
treated with the same level of care. All of the vulnerabilities found should be fixed before deploying
this web application to production.

37

4. Future Work

There are several areas of the web application that could be explored further in future tests. Firstly,
since this application was tested on a web server running on a virtual machine, this test may not
be reflective of vulnerabilities present in the production environment. For this to be tested, the
developers would have to deploy the website to production which - in it’s current state - would not
be recommended. The production environment could potentially be tested seperately at the client’s
request.

Next, something that could be tested more is the functionality and security of the admin section.
No vulnerabilities were found once access to the admin section was gained but only limited testing
was conducted in that section since it was far less of a priority than the areas of the application
accessible to normal users.

In section 2.7.1 a very convoluted method was used to get a psuedo shell on the target. This is
because all methods of PHP execution attempted to get a real shell didn’t work. In the future,
more work could be put into trying to get true shell access on the machine. For example, maybe
the psuedo shell could be used to attempt more various methods of gaining shell access. In this
test getting a shell was considered a low priority especially after creating the psuedo shell and thus
limited time was spent on it.

Privilege escalation was not attempted due to the failed attempts to get a shell. If proper shell access
was gained then privilege escalation on the web server could have been attempted. However, again,
the environment that the tester was provided with does not necessarily represent the production
environment so further consulting with the client would be necessary to determine whether this
kind of test would be appropriate.

38

5. References

OWASP, 2017. OWASP Testing Guide v4 Section 4: Web Application Testing Guide. [Online]
Available at: https://www.owasp.org/index.php/OWASP Testing Guide v4 Table of Contents

Positive Technologies, 2018. Web Application Vulnerabilities - Statistics For 2017. [Online]
Available at: https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-2018/

Thales, 2019. 2019 Thales Data Threat Report. [Online]
Available at: https://www.thalesesecurity.com/2019/data-threat-report

NCSC, 2018. Password administration for system owners. [Online]
Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach

Python Software Foundation, 2019. Post a Multipart Encoded File. [Online]
Available at: https://2.python-requests.org//en/latest/user/quickstart/

39

6. Appendices

6.1 Appendix A: Application Entry Points

Figure 6.1: /page.php GET request

Figure 6.2: /vehicle-details.php GET request

Figure 6.3: Email Subscribe POST Request

40

Figure 6.4: Contact Form POST Request

Figure 6.5: Login POST Request

Figure 6.6: Sign Up POST Request

41

Figure 6.7: Admin Login POST Request

Figure 6.8: Car Search POST Request

Figure 6.9: Booking Form POST Request

42

6.2 Appendix B: Spider of Application

Figure 6.10: Spider of Application (1/3)

43

Figure 6.11: Spider of Application (2/3)

44

Figure 6.12: Spider of Application (3/3)

45

6.3 Appendix C: Local File Inclusion Admin Pages

Figure 6.13: Registered users displayed using LFI

Figure 6.14: Bookings displayed using LFI

Figure 6.15: Brands displayed using LFI

46

Figure 6.16: Contact us submissions displayed using LFI

Figure 6.17: Subscribers displayed using LFI

Figure 6.18: Testimonials displayed using LFI

Figure 6.19: Vehicles displayed using LFI

47

6.4 Appendix D: Python Shells

Figure 6.20: First Python Shell

48

Figure 6.21: Second Python Shell

49

