Sporting Corruption Investigation

CLASSIFIED

Sam Heney 1700469
Year 4 BSc Ethical Hacking
CMP416 Digital Forensics 2

2021 /21

Abstract

This report documents the findings of an investigation of several network traffic captures relating
to a suspected corruption of an Olympic sport, Chess Boxing.

In Capture 1, the suspect Kim Ill-Song is found to be in possession of several files relating to Chess
Boxing, a list of usernames, and a hidden Python-based cipher. There is also reference to the
steganographic tool SilentEye.

They are then in Capture 2 found to be offering bribes to several representatives from various
countries. Whether they were bribed or not and where they are located was determined in most
cases, but in some there was not enough information to draw proper conclusions from.

Capture 3 contained some files downloaded over an FTP session, which when pieced together were
found to be an image of a Chess board. Upon closer inspection, this image was found to contain
steganographic data that could be extracted using SilentEye, then decoded using the Python cipher
also found in capture 1. It was found to contain a password that didn’t seem to be used for anything
in the captures provided.

Finally in capture 4 a meeting was set up over text messaging, with the month and time provided
but not the date, though it was hinted that that information was provided somehow. Further
inspection revealed that the person Kim was meeting with crafted some fake location data, that
when put onto a map spelled “17”, indicating that they would be meeting on the 17th.

It seems that Ill-Song was indeed guilty of bribery and corruption, and this report goes into the
full technical detail of how this incriminating information was uncovered.

Contents

1 Methodology and Findings

1.1 Capture 1
1.1.1 Traffic Analysis o . e
1.1.2 Evidence Analysis
1.2 Capture 2 e
1.2.1 Traffic Analysis e
1.2.2 Evidence Analysis
1.3 Capture 3 e
1.3.1 Traffic Analysis e
1.3.2 Evidence Analysis
1.4 Capture 4 e
1.4.1 Traffic Analysis e
1.4.2 Evidence Analysis
References
Appendices
3.1 Capture 1 Files e
3.2 Capture 1 Fixed Cipher Code o
3.3 Capture 2 Python IRC Decoder
34 Capture 2IRC Log e
3.5 Capture 3 Reconstructed Images 0.
3.6 Capture 4 Messages Parser
3.7 Capture 4 Location Data

10

12

12

12

14

15

1. Methodology and Findings

1.1 Capture 1

1.1.1 Traffic Analysis

This incident entirely took place on July 11th, 2014 from 21:11:26 to 21:23:52 according to the
timestamps within the captured packets.

The brief provided about this packet capture suggested that some files had been transferred and
that these should be recovered. There are several protocols used for file transfer, but one of the
most common is SMB. Filtering the capture by the SMB protocol shows there was substantial SMB
traffic.

In packet 5857, host 172.29.1.23 announces itself to the network as FOX-WS. Likewise, in packet
5962, host 172.29.1.20 announces itself as DOG-WS. From now on, these hosts will be referred to
by their hostname rather than their IP address.

Starting with packet 23838, the FOX-WS host established a connection to the IPC share on DOG-
WS, allowing it to read the other shares available on the host. The account used to make the
connection is fox-ws\\test, as seen in packet 23844. Beginning in packet 23972, the user reads
all of the available shares on DOG-WS.

From 21:22:16 at packet 23897 to 21:22:18 at packet 24029, the user makes several requests reading
the \\DOG-WS\DOCUMENTS share. Then from 21:22:23 at packet 24034 to 21:22:28 at packet 24095
they browse to the \\DOG-WS\BLAH share.

At 21:22:40 at packet 24186, the file Documents.zip was uploaded from FOX-WS to the \\DOG-WS\
BLAH share. This file could be a compressed archive containing the files mentioned in the brief.

There was some other activity relating to a file called DOCUME~1.zip which appears to be a copy of
the Documents.zip file based on the limited data captured. FOX-WS also accessed several other
files from the \\DOG-WS\DOCUMENTS share, but they were only default files, and Documents.zip was
the only file transferred.

1.1.2 Evidence Analysis

The Documents.zip file mentioned was recovered using tshark’s ability to extract SMB objects using
the ——extract-objects flag. Figure 1.1 shows the full list of files and folders within the extracted
folder. All of the files can be seen at appendix 3.1.

Actual\ Documents
GoT\ Spoilers.docx
NorthKorea.docx
PiD.docx

Chess\ Boxing
NK.jpg
Rules\
Rules\
Rules\

. .docx
.docx
.docx
Rules\ 5.docx
Rules\ 6.docx
Rules\ 7.docx
Enter\ the\ WuTang
trackl10.docx
track6.docx
More\ Documents
BillOfRights.txt
NorthKorea. jpeg

1

2

8
Rules\ 4.docx

)

6

7

Figure 1.1: List of files within Documents.zip

Actual Documents

These are several files containing text encoded using base64. All three of these files were created
by ”Eric¢” and last modified by ”Bryan Schmidt”, according to the Word metadata.

GoT Spoilers.docx contains some spoilers for the TV show Game of Thrones.

NorthKorea.docx contains some Russian text referring to some insider information about tech-
nology being developed within the North Korean military, being sent to a person referred to as
Obi-Wan.

Finally, PiD.docx is a letter from a person claiming to be William Campbell stating that they have
replaced Paul McCartney.

Chess Boxing

This folder contains seven files that document the rules of Chess Boxing, indicating that this is
the sport targeted for corruption. Again, these files were created by ”"Eric” and last modified by
”Bryan Schmidt”. NK. jpg is the North Korean flag, which potentially indicates the involvement of
North Korea.

Enter the WuTang

This folder contains two files that again contain Base64 encoded contents. The files in this case
were both created and last modified by ”Bryan Schmidt”.

track10.docx contains lyrics to the song ”Protect Ya Neck”, which is indeed track 10 on the album
"Enter the WuTang” (Wu Tang Clan, 1994), referred to by the folder name.

track6.docx however does not contain lyrics to a song, but contains a list titled " The Mystery of
Chess Boxing: (usernames)”. This could be the list of names/aliases of actors in the case referred
to by the brief. The full list can be seen in appendix 3.1.

More Documents

This folder contained a text copy of the American Bill of Rights, as well as another jpeg image of
the North Korean Flag.

Running binwalk on the image revealed that it contains a zip file with a python script inside, as
seen in figure 1.2.

[sam@khaos: :More Documents]$ binwalk NorthKorea.jpeg

DECIMAL HEXADECIMAL DESCRIPTION

JPEG image data, JFIF standard 1.01
Zip archive data, at least v2.0 to extract, name: untitled/
Zip archive data, at least v2.0 to extract, compressed size: 604, uncompressed size: 1397, name: untitled/broken.py

0x10A7 End of Zip archive, footer length: 22

Figure 1.2: Binwalk revealing hidden zip file

The python file inside, named broken.py, is a Python script that has some functions that could be
used as a cipher, making use of a text file to encode and decode information. The variable name
used to refer to the text being used is ”bill”, likely referencing the Bill of Rights txt file.

Making use of the functions in the script, a tool was developed which can be used to encode and
decode information using the cipher, shown in figure 1.3.

[sam@khaos: :cipher]$ python2 fixed.py -e "heres some test data to encode"
b249012487 250012487a2501,2418a2501 24971249512487,2418n250212487a2501n25602,2418a24
86 2483n2502 2483,2418n2502 2497,241812487d2496h2485 2497a248612487

[sam@khaos: :cipherl]$ python2 fixed.py -d "b249012487 250012487a2501,2418a2501 2

4971249512487 ,2418n250212487a2501n2502,2418a2486 2483n2502 2483,2418n2502 2497,2418
12487d2496h2485 2497a248612487"

heres some test data to encode

[sam@khaos : :cipherls$ []

Figure 1.3: Cipher in use
The full source code of the repaired cipher program can be seen at appendix 3.2.

untitled folder.zip

This zip file contained nested folders named ”untitled folder”, with the final folder being named
”SilentEye”. The full structure can be seen in figure 1.4. SilentEye is a steganography tool (Achor-
ein, 2010), indicating some data hidden in the images found, but neither image contained SilentEye
data.

[sam@khaos: :Documents]$ tree untitled\ folder

untitled\ folder
L— untitled\ folder

L— untitled\ folder\ 2
L— untitled\ folder
L— untitled\ folder
L— silentEye

Figure 1.4: SilentEye folder

1.2 Capture 2

1.2.1 Traffic Analysis

This incident entirely took place on June 17th, 2014 from 21:59:08 to 22:13:49 according to the
timestamps within the captured packets.

The brief provided about this packet capture suggested that there was an IRC conversation that
should be recovered and decoded. Before searching for IRC traffic, the capture was filtered for
SMB traffic which showed a host announcement for FOX-WS, the same host that was involved in
Capture 1.

Filtering the traffic by the IRC protocol showed that there was IRC traffic, part of this traffic can
be seen in figure 1.5.

(WTirc
No. Time Source Destination Protocol Lengtt Info
16 13.268894 - 96 Request (ISON)
17 13.454498 185.30.166.35 172.29.1.17 IRC 103 Response (303)
22 15.058733 172.29.1.17 185.30.166.35 IRC 276 Request (PRIVMSG)
28 22.548315 172.29.1.17 185.30.166.35 IRC 74 Request (PING)
30 22.733678 185.30.166.35 172.29.1.17 IRC 114 Response (PONG)
35 28.265806 172.29.1.17 185.30.166.35 IRC 96 Request (ISON)
37 28.451405 185.30.166.35 172.29.1.17 IRC 103 Response (303)
43 34.232842 185.30.166.35 172.29.1.17 IRC 220 Response (PRIVMSG)

Figure 1.5: IRC Traffic

The first IRC traffic seen is an ISON command requesting if the names Razor, Genius, Raekwon,
Killah and Method are currently taken on the channel. Since this is some of the first traffic in the
capture, the user making the requests joined the channel earlier than the beginning of the capture,
possibly meaning that some of the discussion was missed.

The response to the ISON request shows that I11_Song is the user sending the request. Since this
host is FOX-WS, 1ll_Song is also therefore the suspect involved in the Capture 1 case.

The ISON command is used by older IRC clients to check who is online on a friend list (Oikarinen
& Reed, 1993), and given the frequency of the command being sent (around 20 seconds) it’s likely
that this is what’s happening. The analysis of capture 1 showed that Ill_Song kept all of these
usernames in a word document.

Looking at the traffic itself shows that the conversations were encoded using base64, as seen in
figure 1.6.

| 535 £23.4U5295 153.3Y.100. 32 L/2.29.1.11 LKL 1U3 KESPONSE (35u3)

342 256.642491 oZoilo 185.30.166.35 160 Request (PRIVMSG)
350 262.923782 172..29.1.17 185.30.166.35 IRC 74 Request (PING)

Frame 342: 160 bytes on wire (1280 bits), 160 bytes captured (1280 bits)

Ethernet II, Src: Dell fa:a6:cc (00:08:74:fa:ab:cc), Dst: Cisco ba:52:2a (54:75:d0:ba:52:2a)

Internet Protocol Version 4, Src: 172.29.1.17, Dst: 185.30.166.35

Transmission Control Protocol, Src Port: 50588, Dst Port: 6667, Seq: 1717, Ack: 2251, Len: 106

Internet Relay Chat

~ Request: PRIVMSG Razorl :SkVRSE8YTE10UVFHRVpKQUSGWENBNURQT1ZSV1FJRFhORjJHUUTEVUSCUINBWUXFTVIaROsOM1RGWTO9PTO9PQ==

(vvvw

Figure 1.6: Base64 encoded IRC message

In order to save the IRC log for further processing, tshark was used to follow the stream of all IRC
traffic. Grep was then used to filter just the private messages sent to and from the client. Finally
the output was written to the file log.encoded. The full command used is as follows:

tshark -r 'Capture 2.pcap' -q -z follow,tcp,ascii,0 | grep PRIVMSG > log.encoded

1.2.2 Evidence Analysis

In this section, the code snippets have been simplified to make them more readable. The full final
code can be found at appendix 3.3.

With the chat log fully encoded, it would need to be processed by a script that could go through
each message, decode them, and output them. Python was determined to be most suitable for the
task. Firstly the file was loaded in and each line was parsed in order to pass just the encoded part
of each line to a decoder function:

for line in encoded:
if line.startswith('PRIVMSG'):
print(decode(line[line.find(':"') + 1:])
else:
print(decode(line[line.find('I11_Song :') + 10:])

The lines had a different format depending on whether they were outgoing or incoming, making the
if/else necessary. Since each line seemed to be base64 encoded, the decode () function just needed
to decode the base64:

def decode(line):
return base64.b64decode(line)

Executing this revealed that beyond the base64 encoding, the messages were encoded with several
different encodings, seen in figure 1.7

To: Razorl
b'Ga======

From: Razorl
b'243730302c3030302069742069732e2057686572652063616€2049206d656574207961753f "

To: Razorl
b ' JEQHO2LMNQQGEZJANFXCASDPOVRWQIDXNF2GQIDUNBSSAYLEMRZGK43TFY:

To: Geniusl
b'IFZSA53FEBSGS43D0VZXGZLEEBSWCATMNFSXELBAJEQGEZLMNFSXMZIAJEQG22LHNB2CAYTFEBQWE3DFEB2G6IDIMVWHAIDZN52SA53J0RUCA6LPOVZCA43FMFZGG2B
0

From: Geniusl

b'111 040 163 145 145 056 040 124 150 145 156 040 167 145 040 155 165 163 164 040 155 145 145 164 054 040 141 156 144 040 111 040
167 151 154 154 046 163 145 145 040 164 150 145 040 166 141 154 151 144 151 164 171 040 157 146 040 164 150 151 163 040 143 154
141 151 155 056'

Figure 1.7: Various encodings across several messages

Studying the encoded messages revealed that certain users used certain encodings consistently. The
decode () function was changed to take the username of the sender, and this was used to create
custom decoding algorithms per user.

Il Song’s messages were determined to be base32 encoded, so their decoder was implemented as

follows:

if sender == 'I1l_Song':
line = base64.b32decode(line) .decode()

Razorl and Raekwon’s messages are hex encoded and have Windows-1251 ascii encoding, which
was a little more complicated:

elif sender == 'Razorl' or sender == 'Raekwon' or sender == 'Method':
line = bytearray.fromhex(line.decode()) .decode('cpl1251"')

Killah and Geniusl’s messages are octal encoded which was significantly more complicated to deal
with than the other two encodings:

elif sender == 'Killah' or sender == 'Geniusl':
new_line = "'
line = line.split()
for i in range(len(line)):
new_line += chr(int(line[i] .decode(), 8))
line = new_line

Once all of the decoders had been implemented, the log could be read. The full log can be found
at appendix 3.4.

The first conversation is with Razor, where they accept a bribe of $700,000. Ill_Song also mentions
that Razor is based in ”the City of Love”, commonly used to refer to Paris.

Next there is a discussion with Genius. Genius refers to a location with an md5 hash, and Ill_Song
responds "not here” implying that is their location. Cracking the hash using hashcat reveals it to
be Caracas. Genius mentions being able to help with Ill_Song’s ”search”. There is no mention of a
bribe.

After that is Method. Ill_Song attempts to initiate a discussion about a bribe with Method, but
they turned it down. There was no mention of their location.

Next is Killah. Immediately, Ill_Song reveals that Killah is based in Qatar. When offered the chance
to bribe, Killah turned it down across two messages which seem to imply that there are multiple
people operating the same account.

Finally, Rackwon. Raekwon is aware of the bribe bought by Razor, and is revealed by Ill_Song to
be an official on the executive committee of the ICBA. They end up accepting a bribe of 20 million
Rubles.

The following is a table showing the aliases of the officials, their locations if known and whether or
not they were bribed:

Alias Location Bribed
Razor Paris, France Yes
Genius Caracas, Venezuela Unknown
Method Unknown No

Killah Qatar No
Raekwon Russia Yes

1.3 Capture 3

1.3.1 Traffic Analysis

This incident entirely took place on July 3rd, 2014 from 21:33:35 to 21:40:03 according to the
timestamps within the captured packets.

The brief provided about this packet capture suggested that there was some FTP traffic that might
contain some forensically obfuscated files. As in the last capture, an SMB host announcement for
FOX-WS was found at packet 6005. This again proves that Il1l_Song was the suspect here.

Filtering for FTP traffic shows that there was an FTP exchange. At 21:36:35 in packet 5854, user
Ill_Song connects to the server named ”Super Secret Server” with the password "Ill_Song”. As a
sample of the FTP traffic found, this exchange can be seen in figure 1.8.

(WTftp XK
N Time Source Destination Protocol Lengtt Info
[| 5852 179.750171 172.29.1.21 172.29.1.23 FTP 79 Response: 220 Super Secret Server
i 5853 179.750921 172.29.1.21 172.29.1.23 FTP 79 Response: 220 Super Secret Server

5854 179.767158 1972829125 172.29.1.21 FTP 69 Request: USER Ill Song

5856 179.767169 172.29.1.21 172.29.1.23 FTP 88 Response: 331 Please specify the password.
! 5857 179.767408 172.29.1.23 172.29.1.21 FTP 69 Request: USER Ill Song
| 5859 179.767420 172.29.1.21 172.29.1.23 FTP 88 Response: 331 Please specify the password.
‘ 5860 179.767658 172.29.1.23 172.29.1.21 FTP 69 Request: PASS Il Song
| 5861 179.767666 172.29.1.23 172.29.1.21 FTP 69 Request: PASS Ill Song
‘ 5864 179.887813 172.29.1.21 17/20222), 1L, 23 FTP 77 Response: 230 Login successful.

Figure 1.8: FTP Traffic

During this FTP session, two files were downloaded: sandofwhich.zip and 0jd34.zip. This can
be seen in figure 1.9.

LU4 NECOpUIIDC. LL7 LHLECI LY FAdDDLVE IMUUT \ L/ L ,£7,1,£1,£10,£L02) .

76 Request: RETR sandofwhich.zip

130 Response: 150 Opening BINARY mode data connection for sandofwhich.zip (24792 by
78 Response: 226 Transfer complete.

62 Request: TYPE I

85 Response: 200 Switching to Binary mode.

60 Request: PASV

103 Response: 227 Entering Passive Mode (172,29,1,21,121,89).

70 Request: RETR 0jd34.zip

124 Response: 150 Opening BINARY mode data connection for ojd34.zip (24714 bytes).
78 Response: 226 Transfer complete.

Figure 1.9: Two files downloaded over FTP

Upon inspection of these files, discussed further in the next section, it was found that they were
incomplete. Searching for other files revealed an email exchange between kim.illsong <kim.illsong®
aol.com> and The Gza <da.genius36@aol.com>. Ill_Song’s full alias Kim Ill-Song is likely a
reference to the founder of North Korea Kim Il-sung.

The Gza opens with ”You have made a bold claim but i’d like to see some proof.”. Kim Ill Song
responds with ”Ask and you shall receive. You know where to find it.”. After this exchange, Kim
Ill-Song sent two zip files by email, which were recovered from the raw tcp stream with file carving.

1.3.2 Evidence Analysis

All of the zip files recovered were found to contain many different files with a .jpg extension. Upon
further inspection, they contain image data but only some of them contain the start bytes for a jpg
image, indicating that this is fragmented image data.

The brief suggested that an Edward Snowden quote might help. The file names of all the images are
individual words that seem like they could make up a sentence, and this quote seemed to contain
the words within the filenames:

“I can’t in good conscience allow the U.S. government to destroy privacy, internet free-
dom and basic liberties for people around the world with this massive surveillance ma-
chine they’re secretly building.” - Edward Snowden

The images with the words required to make up the entire quote came from each of the four zip
files. Once assembled by sequencing all the files into one image file, the complete image could be
recovered and can be seen in figure 1.10.

Figure 1.10: Image assembled from the fragments

The vertical line artefacts across the image suggested some stegonography had been applied to the
image. Using the tool referred to by a file on Ill-Song’s system in capture one, SilentEye, some data
was recovered as seen in figure 1.11.

File Edit Media ?

Media's encodina format : PRG-I ¥

Options

S, Luminanceinterval (k)— '~ ' ' |5 =
| Header position [bottom]
» Passphrase [eocecccee [~ show

Decoded message
i2454 2497d2496n2502
2470 2500 25070243652452
2500s2503n250212487€2456
2497 2500h248512487
2470b2490e2491a2501m246
6 2483a2501a2501e2505
2497 250022486

imagelpg o
@Decode «g Property W Encode CharSet: [UTF8 - @ | Encryptec ' Compres: & Cancel |) Decode |

Figure 1.11: Data recovered from the image using SilentEye

10

This data appeared to be in the format of the python cipher also from capture one, and putting it
through the cipher revealed the message to be ”Dontry2BruteForceThisPassword”, seen in figure
1.12. Tt’s unclear what this text/password might be used for, but this is most likely the encoded
communication referred to by the brief.

[sam@khaos : :cipher]$ python fixed.py -d "i2454 2497d2496n2502 2470 2500 250702436
52452 2500s2503n250212487e2456 2497 2500h248512487 2470b2490e2491a2501m2466 2483a2501

a2501e2505 2497 2500a2486"
DontTry2BruteForceThisPassword

Figure 1.12: Encoded text decoded by the cipher

The remaining image fragments still seemed to make up some pictures, but the words weren’t
aligned with any particular quote. In figure 1.13, the method used to brute force the order of the
words can be seen, where the image was refreshed with each new fragment added.

:all_pics]$ cat condone
:all_pics]$ cat condone
:all pics]$ cat condone
:all_pics]$ cat condone

.jpg American
.jpg American
.jpg American
.jpg American

-3pg
-3pg
-ipg
-3pg

web-based.jpg > image2.jpg

web-based.jpg security.jpg > image2.jpg
web-based.jpg terrorism.jpg image2.jpg
web-based.jpg terrorism.jpg[]> image2.jpg

Figure 1.13: Brute force method to find images

Eventually the images could be fully reconstructed, they can be seen at appendix 3.5. They don’t
seem to be relevant to the case other than the second image being of Kim Jong-un, the Supreme

Leader of North Korea.

11

1.4 Capture 4

1.4.1 Traffic Analysis

This incident entirely took place on July 2nd, 2014 from 17:38:50 to 17:52:32 according to the
timestamps within the captured packets.

The brief for this capture mentioned that a conversation had taken place, but didn’t mention a
protocol. Searching for "Ill-Song” revealed a conversation over HTTP requests, seen in figure 1.14.

Packet details ~ Narrow & Wide v Case sensitive String v "III-Song ‘ l Find l Cancel

Time Source Destination Protocol Lengtt Info
2539 49.019300 199.87.160.87 192.168.1.5 HTTP 355 HTTP/1.1 200 0K (a ication/json)
L 9 65 199. 192.168.1.5 TCP 355 [TCP Retransmi 30 - 46142 [PSH, ACK]
192.168.1.5 HTTP 1158 HTTP/1.1 200 Ol pplication/json)
IntelCor_f9:.. ASUSTekC_99:.. LLC 379 I, N(R)=16, N(; DSAP 0xf2 Individual, SSAP Spanning Tree BPDU Command
2543 49.022727 192.168.1 199.87.160.87 TCP 66 46142 - 80 [ACK] Seq=663 Ack=290 Win=15680 Len=0 TSval=361645 TSecr=41814024.

540 49

Key: senderId
v Member Key: senderName

String value: Kim Ill-song

Kev: cenderName

Figure 1.14: Searching for ”Ill-Song”

Looking at the X-Requested-By header revealed that it was sent by an app called ” TextFree” and
the user agent showed that it was likely a Nexus 7, shown in figure 1.15. A cursory look at the text
data shows that this device belongs to ” Ann Dercover” and she’s sending and recieving messages
from ”Kim Ill-Song”, a familiar name.

e - -

X-Requested-With: com.pinger.textfree\r\n

User-Agent: Mozilla/5.0 (Linux; U; Android 4.2.2; en-us; Nexus 7 Build

Figure 1.15: Some key headers

All of the message data was send to and received from a specific ip address, they were all http
requests and they were in json. Putting all of this in a tshark filter allowed just the contents of
those requests to be extracted:

tshark -r "Capture 4.pcap" \
-Y "http && json && (ip.src == 199.87.160.87 || ip.addr == 199.87.160.87)" \
-T fields -e http.file_data > messages

Right after the conversation there was a sequence of location data posted to a map api. Filtering
by requests sent to that endpoint with tshark allowed for the data to be extracted:

tshark -r Capture\ 4.pcap -Y "http.host == mob.mapquestapi.com" > locations

1.4.2 Evidence Analysis

The message data was obscured accross many large JSON blobs. A python script was developed
to extract the conversation from the blobs, and the full code can be seen at appendix 3.6.

The script outputs the conversation in csv along with the relevant phone numbers. The full clean
dialogue can be seen in figure 1.16.

Kim Ill-song: Good afternoon, Ann.

Ann: who is this?

Kim Ill-song: Castling.

Ann: where are you?

Kim Ill-song: I know I can't tell you that.

Ann: Do you know that there are people investigating Kim I1l-Song?

Kim Ill-song: Of course. However, they will never know it is me behind the bribes.

Ann: still we should be careful. Pay attention. I want to meet in September at 5PM.
Kim Ill-song: At our old meetup spot?

Ann: yes

Kim Ill-song: What day?

Ann: I told you to pay attention.

Figure 1.16: Recovered chat log

The chat log reveals that Kim Ill-Song is actually someone named ” Castling”, although it’s likely
that this is another pseudonym given the relevance of that name to chess. Ann Dercover mentions
that they should meet in September at 5PM at their "old meetup spot”. She does not mention
a day in September, and when Ill-Song asks her for that she mentions that he should have paid
attention.

The other data present was the location data, which was parsed with some simple vim commands.
Once parsed into a CSV format, the data could be imported to Google Earth, the result of which
is in figure 1.17. The full location data in CSV format can be seen at appendix 3.7.

0022 (0000 ! COMODI-COCO A -
L m 00 N

Figure 1.17: Location data mapped out

Since this data spells out the number 17, it can be inferred that Ann Dercover deliberately crafted
this location to convey that the they should meet on the 17th of September at 5PM.

13

2. References

Achorein, (2010), SilentEye, Available at: https://achorein.github.io/silenteye/

Oikarinen & Reed, (1993), Internet Relay Chat Protocol,
Available at: https://tools.ietf.org/html/rfc1459#section-5.8

Wu Tang Clan, (1994), Enter The Wu-Tang (36 Chambers),
https://www.discogs.com/Wu-Tang-Clan-Enter-The-Wu-Tang-36-Chambers/release/670735

14

3. Appendices

3.1 Capture 1 Files

Jon Snow burns down Winterfell
(again) and the Wall.

Hodor kills Theon.
Daenerys gets eaten by a dragon.

Stannis falls in love with Tyrion.

Figure 3.1: ”GoT Spoilers.docx” de-
coded

JI71s1 KOTO 3TO MOXKET KacaThCs:

51 681 cBUpeTeneM, uTo Kum YeH YH U mpaBUTeTbCTBO CeBepHON
Kopeu paspaGoTany IIporpaMmy, KOoTopast HO3BOJIIET UM
TyTemecTBOBaTh BO BpeMeHH. C UCIOTb30BaHUEM 3TON TeXHOJIOTHH, 5
CUYHTAK0, YTO OHU HaMepEeHHI JBUraThCs Bllepen U U3MEeHUTh
pe3yneTaTH BOWHE B Kopee.

Tloxasnyiicta, O6u-BaH, TH MOsI eIUHCTBEHHasl HafleXkaa.
Translation:

For whom it may concern:

I have witnessed Kim Jong-un and the North Korean government
develop a program that allows them to travel in time. With this
technology, I believe they intend to move forward and change the
outcome of the Korean War.

Please, Obi-Wan, you are my only hope.

Figure 3.3: 7”NorthKorea.docx” de-
coded and translated

15

Dear Ed,

Yeah I totally took over for Paul after he died in '66. You got me. As
you can see, we don’t even look that much alike:

Before(Paul) After(Me)

We aren’t even the same height! What can I say, people are stupid.
Thanks for the inquiry,

William Campbell
(Paul McCartney)

Figure 3.2: "PiD.docx” decoded

1. SUMMARY OF RULES. MAIN POINTS.
TOUCH MOVE rule strictly applies.

. If a piece is touched, then it must be moved (if a legal move is
available)
. If an opponent’s piece is touched, it must be taken (if legal).

COUNTDOWN IF STALLING FOR TIME.In general a player manages
how much or little time to take for each move, and this is fine!
However, if a player clearly plays far too slowly for the specific
position, for example when he is facing unavoidable checkmate, the
arbiter will do a countdown. He will point at the board, and warn the
player by counting to 10 with his hands (just like a boxing referee). If
the player has not moved by the count of 10, he loses the game and
the match. Notte there is no minimum time to make a move! Also, even
if there is only 1 legal move, the player should be allowed some time
to psychologically compose themselves. It should be considered that

Figure 3.4: Sample of the decoded
Chess Boxing rule files

"Protect Ya Neck"

"So what's up man?

Cooling man"

"Chilling chilling?"

"Yo you know I had to call, you know why right?"
"Why?"

"Because, yo, I never ever call and ask, you to play something right?"
"Yeah"

"You know what I wanna hear right?"

"What you wanna hear?

I wanna hear that Wu-Tang joint"

"Wu-Tang again?"

"Ah yeah, again and again!"

[sounds of fighting]

Figure 3.6: Sample of the decoded
Figure 3.5: "NK.jpg” "track10.docx” file

The Mystery of Chess Boxing:
(usernames)

Mr. Method
Kim Ill-Song
Mr. Razor
Mr. Genius
Mr. G. Killah
Matt Cassel
Mr. I. Deck
Mr. M Killa
Mr. O.D.B.
Mr. Raekwon
Mr. U-God
Mr. Cappadonna (possibly)
John Woo?

Mr. Nas

Figure 3.7: Chess Boxing Mystery Aliases

The Bill of R ranscription
The Preamble to The Bill of Rights
of th
York, on

thousand seven hundred and eighty nine

time

aid Legislature:
st

Figure 3.8: "NorthKorea.jpeg” Figure 3.9: ”BillOfRights.txt” sample

16

3.2 Capture 1 Fixed Cipher Code

import re
import sys

def

def

def

def

def

def

if

__hame__ ==

fileToString(pathToFile):
f = open(pathToFile, "r")
strs = ""

#adds each line of the file to the strs string

for line in f.readlines():
strs+=line
return strs
ASCII():
#number of ASCII characters
NumOfASCII = 150
#returns list of all ASCII characters

return "".join([chr(i) for i in range(NumOfASCII)])

sumName (name) :
sums=0

#sums the indices in ASCII of all the characters in name

for x in name:

sums+=ord (x)
return sums
indexInFile(password,name) :
indices = []
ASCIIArray = ASCII()

#populates an array of indices to be used by the encoder

for chrs in password:

indices.append (ASCIIArray.index(chrs)+sumName (name)*2)

return indices

indexInASCII (name,encoded) :

indices = []

ASCIIArray = ASCII()

#split on all non—numeric characters

#remove first index because it is blank
indexList = re.split("["\d]",encoded) [1:]

#converts encoded characters to ASCII
for index in indexList:

indices.append (ASCIIArray[int(index) - (sumName(name)*2)])

#returns decoded message
return "".join(indices)
encode (name, password) :

#returns a list of indices to be used for encoding

indices = indexInFile(password,name)

#convert file assoctated with name to a string

bill = fileToString("./%s.txt"/name)

encoded = ""

#add letter in file plus index of the

for index in indices:
encoded+=bill[index]+str (index)

return encoded

"__main__

name = "BillOfRights"

17

letter in the file to the encoded string

if (len(sys.argv) != 3):
print("use '-e [message]' to encode a message or '-d [encoded text]' to decode some text.")
elif (sys.argv[i] == "-d"):
print (indexInASCII(name, sys.argv([2]))
elif (sys.argv[i] == "-e"):
print(encode(name, sys.argv([2]))
else:
print("use '-e [message]' to encode a message or '-d [encoded text]' to decode some text.")

3.3 Capture 2 Python IRC Decoder

import base64

def decode(line, sender):
if line.startswith(" e e ")
line = line[17:]

all messages are baseb4 encoded
line = base64.b64decode(line)

Ill Song's messages are base32 encoded
if sender == 'I11_Song':
try:
line = base64.b32decode(line) .decode()
except:
Strange edge case where a message was partially sent by Ill_Song
in baseb4, then the full message was sent in base32
line = line.split()
line = base64.b32decode(line[1]).decode()

Razorl and Raekwon's messages are hexr encoded and have weird ascii encoding
elif sender == 'Razorl' or sender == 'Raekwon' or sender == 'Method':
line = bytearray.fromhex(line.decode()).decode('cpl1251"')

Killah and Geniusl's messages are octal encoded
elif sender == 'Killah' or sender == 'Geniusl':
new_line = "'
line = line.split()
for char in line:
new_line += chr(int(char.decode(), 8))
line = new_line

return line

_ __ ' __main__"':

encoded = open('log.encoded', 'r')

if __name ==

print('---")
for line in encoded:
if line.startswith('PRIVMSG'):
print('To:"', line[8:line.find(':')])
print (decode(line[line.find(':') + 1:], 'I11_Song'))

18

else:

sender = line[1l:1line.find("!")]

print('From:', sender)

print (decode(line[line.find('I11_Song :') + 10:], sender))
print('---")

3.4 Capture 2 IRC Log

To: Razorl

Mr. Razor, I am excited about the prospect of the Chess Boxing world title coming to Pyongyang.
From: Razorl

Well the decision is not final yet.

To: Razorl

Pyongyang is beautiful this time of year. Perhaps you would like to visit and experience what Best
Korea has to offer.

From: Razorl

I am a very busy man, but perhaps I could be persuaded to visit. See if Pyongyang is the right
place for the World Title.

To: Razorl

Perhaps not. How about I send you a gift? Something to get you out of the City of Love and take
your own vacation somewhere.

From: Razorl

Somewhere expensive, I hope.

To: Razorl

5

From: Razorl

9

To: Razorl

7

From: Razorl

$700,000 it is. Where can I meet you?

To: Razorl

I will be in touch with the address.

To: Geniusl

As we discussed earlier, I believe I might be able to help you with your search.
From: Geniusl

I see. Then we must meet, and I will see the validity of this claim.

To: Geniusl
I can be in ¢9fabb8cb3b197aebcedbail8415a375b within the week.

19

From: Geniusl

No. Not here. Can I not go to you?

To: Geniusl

I am afraid that would be unwise. I will send you a message with the date and location through a
more secure form of communication.

To: Method

Mr. Method, I am excited about the prospect of the Chess Boxing world title coming to Pyongyang.
From: Method

I am not sure who you are, but I have an idea. Either way, I am not interested.

To: Method

I am just hopeful. It would mean so much to have the Title here. Please consider it.

From: Method

Do not speak to me again.

To: Killah

How is the weather in Qatar, Mr. Killah?

From: Killah

Hot, as always. Who is this?

To: Killah

I am a fan of Chess Boxing. I would love to see the Title held in Korea.
From: Killah

We will have to see how the bid turns out.

To: Killah

Is there anything that I could do to help make your decision easier?
From: Killah

No! The great nation of Qatar would never be swayed so easily.

From: Killah

Nor would I. We do not take kindly to this pathetic notion of bribery.

To: Raekwon

Mr. Raekwon, have you spoken with Mr. Razor?

From: Raekwon

I have, but I won’t be bought so easily.

To: Raekwon

Bought? Of course not. You are an official on the executive committee of the ICBA. I just want
you to know that I am here to help make your decision as easy as possible.
From: Raekwon

I would need at least 20 million Rubles.

To: Raekwon

Consider it done. I will send you the information for the drop-off point soon.

20

3.5 Capture 3 Reconstructed Images

Figure 3.11: Reconstructed Image 3

21

3.6 Capture 4 Messages Parser

import csv
import json

class parser:
def __init__(self):
self.ids = []
self.out_file = open('readable.csv', 'w', newline='"')
self.writer = csv.writer(self.out_file)

#self.writer.writerow(['Sender', 'Sender Number', 'Rectipient Number', 'Message’'])

def write(self, message, text):
#self.uriter.writerow([message['senderName'], message['senderId'], message['recipientId'],
self .writer.writerow([messagel['senderName'], text])

def parse(self, file):
for line in file:
parsed = json.loads(line.replace("\\n", "").replace("\\r", ""))

try:
for message in parsed['result']['recMessages']:
if message['messageld'] not in self.ids:
self.ids.append(message['messageId'])
self .write(message, message['messageText'])
except:
pass

try:

self .write(parsed, parsed['messageTxt'])
except:

pass

if __name__ ==
p = parser()

__main__

with open('messages.json', 'r') as file:
p.parse(file)

22

3.7 Capture 4 Location Data

Latitude,Longitude
46.85661315917969,-114.01860809326172
46.85693359375,-114.01863098144531
46.85727310180664,-114.01868438720703
46.857601165771484,-114.01866912841797
46.858055114746094,-114.01866149902344
46.8582878112793,-114.01864624023438
46.858524322509766,-114.01863861083984
46.858734130859375,-114.01864624023438
46.858943939208984,-114.01864624023438
46.859046936035156,-114.01864624023438
46.85914993286133,-114.01864624023438
46.859466552734375,-114.01864624023438
46.85957717895508,-114.01864624023438
46.85969161987305,-114.01864624023438
46.85980987548828,-114.01864624023438
46.85993194580078,-114.01864624023438
46.86029052734375,-114.01863098144531
46.86052322387695,-114.01863861083984
46.86098861694336,-114.01863098144531
46.861228942871094,-114.01863861083984
46.86147689819336,-114.01863098144531
46.86159896850586,-114.01863098144531
46.86183547973633,-114.01862335205078
46.862064361572266,-114.01861572265625
46.862281799316406,-114.01860046386719
46.86248779296875,-114.01860046386719
46.86260223388672,-114.01859283447266
46.86282730102539,-114.0185775756836
46.86306381225586,-114.0185775756836
46.863426208496094,-114.0185546875
46.86355209350586,-114.01854705810547
46.86367416381836,-114.01853942871094
46.8637809753418,-114.01853942871094
46.86387252807617,-114.0185317993164
46.86370849609375,-114.01163482666016
46.864017486572266,-114.01107025146484
46.864044189453125,-114.01074981689453
46.86404800415039,-114.01071166992188
46.86408996582031,-114.01042175292969
46.86408996582031,-114.01012420654297
46.864078521728516,-114.00962829589844
46.86406707763672,-114.00910186767578
46.86407470703125,-114.00875854492188
46.86408233642578,-114.0084228515625
46.864044189453125,-114.00716400146484
46.864044189453125,-114.00694274902344
46.86404800415039,-114.00680541992188
46.86405563354492-114.00670623779297
46.864051818847656,-114.00662231445313
46.864051818847656,-114.00646209716797

46.864051818847656,-114.00627899169922
46.864051818847656,-114.00605773925781
46.864051818847656,-114.00592803955078
46.86405944824219,-114.00563049316406
46.86405944824219,-114.00534057617188
46.86405563354492,-114.00506591796875
46.864051818847656,-114.00477600097656
46.864051818847656,-114.00452423095703
46.864044189453125,-114.0042724609375
46.864044189453125,-114.00414276123047
46.86404037475586,-114.00392150878906
46.86393356323242,-114.00351 71508789
46.86381912231445,-114.00352478027344
46.863643646240234,-114.0035400390625
46.86354446411133,-114.00354766845703
46.86325454711914,-114.00360107421875
46.86309051513672,-114.00376892089844
46.86293411254883,-114.00396728515625
46.86286163330078,-114.00408172607422
46.862701416015625,-114.00432586669922
46.86253356933594,-114.00457763671875
46.86210632324219,-114.00520324 707031
46.86148452758789,-114.00609588623047
46.86122131347656,-114.00647735595703
46.86103057861328,-114.00672912597656
46.86065673828125,-114.00727081298828
46.86037063598633,-114.0076675415039
46.859989166259766,-114.00820922851563
46.85979080200195,-114.00848388671875
46.85969161987305,-114.00862121582031
46.859500885009766,-114.00887298583984
46.85930252075195,-114.00914001464844
46.8590087890625,-114.0095443725586
46.858829498291016,-114.00979614257813
46.858646392822266,-114.01005554199219
46.858375549316406,-114.01044464111328
46.858123779296875,-114.01079559326172
46.85795211791992,-114.01103973388672
46.85765838623047,-114.0114517211914
46.857513427734375,-114.01164245605469
46.85749053955078,-114.01168823242188
46.85747146606445,-114.01171112060547
46.857418060302734,-114.01179504394531
46.857181549072266,-114.01212310791016
46.85708236694336,-114.01225280761719
46.85697937011719,-114.01237487792969
46.856834411621094,-114.01256561279297
46.85672378540039,-114.01271057128906
46.856597900390625,-114.01287078857422
46.85647201538086,-114.01302337646484
46.856319427490234,-114.01313018798828

23

