
Protecting the Penguin: Linux
Security Monitoring with eBPF

by Sam

who am i

● Sam

● Ethical Hacking grad (2021)

● Security Analyst at Jane Street

● Linux nerd

● Vegan btw

How did we get here??

Makes the browser programmable

Arbitrary code? In my browser?🤯
Safety

Untrusted code can’t run wild,
we need

sandboxing

Continuous Delivery

New functionality without
shipping new browser, we need

easy integration

Performance

There should be minimal
overhead, so we need

native execution

Arbitrary code? In my browser?🤯
● Sandboxing: each website is isolated

● Easy integration: it just runs

● Native execution: JIT compiler

The browser is now programmable

What is Linux?

What is Linux?

● It’s an Operating System

● Runs on billions of devices globally

● Free and open source

● Uses the Linux kernel

What is Linux?

What is Linux?

What is Linux?

What is Linux?

what if we
want more?

Extending Kernel

Option 1: Native Support
● Change kernel source code

● Email Linus Torvalds

● Wait a few years for your changes to land

● Wait 5 years for users to upgrade kernel

Extending Kernel

Option 1: Native Support
● Change kernel source code

● Email Linus Torvalds

● Wait a few years for your changes to land

● Wait 5 years for users to upgrade kernel

● Climate change destroy planet

Extending Kernel

Option 1: Native Support
● Change kernel source code

● Email Linus Torvalds

● Wait a few years for your changes to land

● Wait 5 years for users to upgrade kernel

● Climate change destroy planet

Option 2: Kernel Module
● Write kernel module

● Compile a few dozen versions

● Create a new package for every distro

Extending Kernel

Option 1: Native Support
● Change kernel source code

● Email Linus Torvalds

● Wait a few years for your changes to land

● Wait 5 years for users to upgrade kernel

● Climate change destroy planet

Option 2: Kernel Module
● Write kernel module

● Compile a few dozen versions

● Create a new package for every distro

● Every new kernel release might break it

● If you get it wrong your kernel will crash

Extending Kernel

Option 1: Native Support
● Change kernel source code

● Email Linus Torvalds

● Wait a few years for your changes to land

● Wait 5 years for users to upgrade kernel

● Climate change destroy planet

Option 2: Kernel Module
● Write kernel module

● Compile a few dozen versions

● Create a new package for every distro

● Every new kernel release might break it

● If you get it wrong your kernel will crash

What is ?

What is ?

Arbitrary code? In my kernel?🤯
Safety

eBPF Verifier: rejects any
unsafe program and provides
sandboxing

Arbitrary code? In my kernel?🤯
Safety

eBPF Verifier: rejects any
unsafe program and provides
sandboxing

Performance

JIT Compiler: generic bytecode
compiled to native CPU
architecture

Arbitrary code? In my kernel?🤯
Safety

eBPF Verifier: rejects any
unsafe program and provides
sandboxing

Continuous Delivery

eBPF Hooks: programs can be
attached, detached and
replaced atomically

Performance

JIT Compiler: generic bytecode
compiled to native CPU
architecture

What is ?

 makes the kernel programmable

extended Berkeley Packet Filter

eBPF hooks

● kprobes
● uprobes
● Tracepoints
● Network packets
● Linux security modules
● Perf events
● etc…

eBPF hooks

eBPF hooks

Demo

eBPF Hello World

SEC("kprobe/__x64_sys_fchmodat")
int demo(void *ctx)
{

bpf_printk("chmod happened!!\n");
return 0;

}

output:
 <...>-123021 [005] d..31 452659.744965: bpf_trace_printk: chmod happened!!
 <...>-123040 [000] d..31 452660.525742: bpf_trace_printk: chmod happened!!
 <...>-123060 [000] d..31 452661.354995: bpf_trace_printk: chmod happened!!

eBPF Hello World

● Userspace program makes that syscall

● eBPF application executes

● bpf_trace_printk(), a helper function, is called

● Writes to /sys/kernel/debug/tracing/trace_pipe

● Not that useful! We need some more tools

eBPF Maps

eBPF Maps

enum bpf_map_type {

 BPF_MAP_TYPE_UNSPEC,

 BPF_MAP_TYPE_HASH,

 BPF_MAP_TYPE_ARRAY,

 BPF_MAP_TYPE_PROG_ARRAY,

 BPF_MAP_TYPE_PERF_EVENT_ARRAY,

 BPF_MAP_TYPE_RINGBUF,

 BPF_MAP_TYPE_PERCPU_HASH,

 BPF_MAP_TYPE_PERCPU_ARRAY,

 BPF_MAP_TYPE_STACK_TRACE,

 BPF_MAP_TYPE_CGROUP_ARRAY,

 BPF_MAP_TYPE_LRU_HASH,

 BPF_MAP_TYPE_LRU_PERCPU_HASH,

};

eBPF Maps

enum bpf_map_type {

 BPF_MAP_TYPE_UNSPEC,

 BPF_MAP_TYPE_HASH,

 BPF_MAP_TYPE_ARRAY,

 BPF_MAP_TYPE_PROG_ARRAY,

 BPF_MAP_TYPE_PERF_EVENT_ARRAY,

 BPF_MAP_TYPE_RINGBUF,

 BPF_MAP_TYPE_PERCPU_HASH,

 BPF_MAP_TYPE_PERCPU_ARRAY,

 BPF_MAP_TYPE_STACK_TRACE,

 BPF_MAP_TYPE_CGROUP_ARRAY,

 BPF_MAP_TYPE_LRU_HASH,

 BPF_MAP_TYPE_LRU_PERCPU_HASH,

};

eBPF Maps

struct bpf_map_def SEC("maps") my_map = {

 .type = BPF_MAP_TYPE_ARRAY,

 .key_size = sizeof(u32),

 .value_size = sizeof(long),

 .max_entries = 256,

};

u32 index = 42;

long *value;

value = bpf_map_lookup_elem(&my_map, &index);

 if (value)

 __sync_fetch_and_add(value, 1);

eBPF Tail and Function Calls

Programs can call other programs!

serve_drink

server_1

bring_order

eBPF Tail and Function Calls

struct {
 __uint(type, BPF_MAP_TYPE_PROG_ARRAY);
 __uint(max_entries, 1);
 __uint(key_size, sizeof(__u32));
 __uint(value_size, sizeof(__u32));
} bar SEC(".maps");

eBPF Tail and Function Calls

SEC("tc")
int serve_drink(struct __sk_buff *skb __unused)
{
 return 0xcafe;
}

static __noinline
int bring_order(struct __sk_buff *skb)
{
 bpf_tail_call(skb, &bar, 0);
 return 0xf00d;
}

SEC("tc")
int server1(struct __sk_buff *skb)
{
 return bring_order(skb);
}

What is ?

● Makes the kernel programmable

● Hooks let us manipulate and interact with kernel data

● eBPF maps let us maintain and share state

● Tail calls & Function calls let us compose larger programs

How does this make us secure?

What is Linux Security?

Linux Security

What do we care about?

● Detecting malicious activity

● Reporting malicious activity

● Preventing malicious activity

Linux Security

What is activity?

● Network traffic

● File interactions

● Running executables

● Changing privileges

All of this activity makes use of the kernel

Linux Security

● LD_PRELOAD
● seccomp
● ptrace
● kprobe tracing

LD_PRELOAD

● C library dynamically linked

● Built into Linux

● Enables hooking of any userspace function

LD_PRELOAD

● C library dynamically linked

● Built into Linux

● Enables hooking of any userspace function

● Bypassed by static linking!

Kernel syscall checks

● ptrace
● seccomp
● kprobe tracing (even with eBPF)

TOCTOU

● Time of Check Time of Use

● Entry point data can be spoofed

Look up DEFCON 29 Phantom Attacks

Linux Security Modules

● Stable, secure interface

● Safe way to introspect syscall data

● No TOCTOU!

● eBPF lets us access these dynamically

LSM Hook Demo

Demo #2

SEC("lsm/path_chmod")
int BPF_PROG(path_chmod, const struct path *path, umode_t mode)
{
 bpf_printk("Change mode of file name %s\n", path->dentry->d_iname);
 return 0;
}

output:
 <...>-128614 [004] d..21 453882.241571: bpf_trace_printk: Change mode of file name boop
 <...>-128634 [010] d..21 453883.248693: bpf_trace_printk: Change mode of file name boop
 <...>-128670 [010] d..21 453884.044865: bpf_trace_printk: Change mode of file name boop

Tetragon

Demo

More stuff!

● ebpf.io

● What is eBPF? - Liz Rice

● libbpf-bootstrap

● libbpf-rs

Thanks!

